Inventiones mathematicae

, Volume 158, Issue 1, pp 181–226 | Cite as

Powers of the Euler product and commutative subalgebras of a complex simple Lie algebra



If \(\mathfrak{g}\) is a complex simple Lie algebra, and k does not exceed the dual Coxeter number of \(\mathfrak{g}\), then the absolute value of the kth coefficient of the \(\dim\mathfrak{g}\) power of the Euler product may be given by the dimension of a subspace of \(\wedge^k\mathfrak{g}\) defined by all abelian subalgebras of \(\mathfrak{g}\) of dimension k. This has implications for all the coefficients of all the powers of the Euler product. Involved in the main results are Dale Peterson’s 2rank theorem on the number of abelian ideals in a Borel subalgebra of \(\mathfrak{g}\), an element of type ρ and my heat kernel formulation of Macdonald’s η-function theorem, a set Dalcove of special highest weights parameterized by all the alcoves in a Weyl chamber (generalizing Young diagrams of null m-core when \(\mathfrak{g}= \text{Lie}\,\mathit{Sl}(m,\mathbb{C})\)), and the homology and cohomology of the nil radical of the standard maximal parabolic subalgebra of the affine Kac–Moody Lie algebra.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Adin, R., Frumkin, A.: Rim Hook tableau and Kostant’s η-Function Coefficients. arXiv:math. CO/0201003 v2Google Scholar
  2. 2.
    Bott, R.: An Application of the Morse Theory to the Topology of Lie Groups. Bull. Soc. Math. Fr. 84, 251–281 (1956)MathSciNetMATHGoogle Scholar
  3. 3.
    Cellini, P., Papi, P.: ad-Nilpotent Ideals of a Borel Subalgebra. J. Algebra 225, 130–141 (2000)CrossRefMathSciNetMATHGoogle Scholar
  4. 4.
    Fegan, H.D.: The heat equation and modular forms. J. Differ. Geom. 13, 589–602 (1978)MathSciNetMATHGoogle Scholar
  5. 5.
    Garland, H.: Dedekind’s η-function and the cohomology of infinite dimensional Lie algebras. Proc. Natl. Acad. Sci. USA 72, 2493–2495 (1975)MATHGoogle Scholar
  6. 6.
    Garland, H.: Lepowsky, J.: Lie algebra homology and the Macdonald–Kac formulas. Invent. Math. 34, 37–76 (1976)MATHGoogle Scholar
  7. 7.
    Kac, V.: Infinite Dimensional Lie Algebras. Cambridge: Cambridge 1990Google Scholar
  8. 8.
    Kostant, B.: Lie algebra cohomology and the generalized Borel–Weil theorem. Ann. Math. (2) 74, 329–387 (1961)Google Scholar
  9. 9.
    Kostant, B.: Eigenvalues of a Laplacian and Commutative Lie subalgebras. Topology 3, 147–159 (1965)CrossRefMATHGoogle Scholar
  10. 10.
    Kostant, B.: On Macdonald’s η-function Formula, the Lapalacian and Generalized Exponents. Adv. Math. 20, 179–212 (1976)MATHGoogle Scholar
  11. 11.
    Kostant, B.: The McKay correspondence, the Coxeter element and representation theory. Astérisque, hors série, 209–255. Paris: Société Mathématique de France 1985Google Scholar
  12. 12.
    Kostant, B.: The set of Abelian ideals of a Borel Subalgebra, Cartan decompositions and Discrete Series Representations. Int. Math. Res. Not. 5, 225–252 (1998)CrossRefMathSciNetMATHGoogle Scholar
  13. 13.
    Kostant, B.: On \(\wedge\mathfrak{g}\) for a Semisimple Lie Algebra \(\mathfrak{g}\), as an Equivariant Module over the Symmetric Algebra S(\(\mathfrak{g}\)). Adv. Stud. Pure Math. 26 (2000); Analysis on Homogeneous Spaces and Representation Theory of Lie Groups, 129–144Google Scholar
  14. 14.
    Kumar, S.: Geometry of Schubert cells and cohomology of Kac–Moody Lie algebras. J. Differ. Geom. 20, 389–431 (1984)MathSciNetMATHGoogle Scholar
  15. 15.
    Kumar, S.: Kac–Moody Groups, their Flag Varieties and Representation Theory. PM 204. Boston: Birkhäuser 2002Google Scholar
  16. 16.
    Lehmer, D.H.: Ramanujan’s function τ(n). Duke Math J. 30, 483–492 (1943)MathSciNetGoogle Scholar
  17. 17.
    Macdonald, I.G.: Affine root systems and Dedekind’s η-function. Invent. Math. 15, 91–143 (1972)MATHGoogle Scholar
  18. 18.
    Macdonald, I.G.: Symmetric functions and Hall Polynomials (2nd Ed.). Oxford 1995Google Scholar
  19. 19.
    J-Serre, P.: A Course in Arithmetic. GTM 7. Springer 1973Google Scholar
  20. 20.
    Stanley, R.P.: Enumerative Combinatorics. 2. Cambridge 1999Google Scholar
  21. 21.
    Suter, R.: Abelian ideals in a Borel subalgebra of a complex simple Lie algebra. arXiv:math.RT/0210463 v1, 30 Oct 2002; Invent. Math. 156, 175–221 (2004)Google Scholar
  22. 22.
    Zelditch, S.: Macdonald’s Identities and the Large N Limit of YM2 on the Cylinder. Commun. Math. Phys. 245, 611–626 (2004)CrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  1. 1.Department of MathematicsMassachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations