Inventiones mathematicae

, Volume 157, Issue 3, pp 575–619

Numerical equivalence defined on Chow groups of Noetherian local rings

Article

Abstract

In the present paper, we define a notion of numerical equivalence on Chow groups or Grothendieck groups of Noetherian local rings, which is an analogue of that on smooth projective varieties. Under a mild condition, it is proved that the Chow group modulo numerical equivalence is a finite dimensional ℚ-vector space, as in the case of smooth projective varieties. Numerical equivalence on local rings is deeply related to that on smooth projective varieties. For example, if Grothendieck’s standard conjectures are true, then a vanishing of Chow group (of local rings) modulo numerical equivalence can be proven. Using the theory of numerical equivalence, the notion of numerically Roberts rings is defined. It is proved that a Cohen–Macaulay local ring of positive characteristic is a numerically Roberts ring if and only if the Hilbert–Kunz multiplicity of a maximal primary ideal of finite projective dimension is always equal to its colength. Numerically Roberts rings satisfy the vanishing property of intersection multiplicities. We shall prove another special case of the vanishing of intersection multiplicities using a vanishing of localized Chern characters.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Dutta, S.P., Hochster, M., MacLaughlin, J.E.: Modules of finite projective dimension with negative intersection multiplicities. Invent. Math. 79, 253–291 (1985)MathSciNetMATHGoogle Scholar
  2. 2.
    Fulton, W.: Intersection Theory, 2nd edition. Berlin, New York: Springer 1997Google Scholar
  3. 3.
    Gillet, H., Soulé, C.: Intersection theory using Adams operation. Invent. Math. 90, 243–277 (1987)MathSciNetMATHGoogle Scholar
  4. 4.
    Hartshorne, R.: Algebraic Geometry. Grad. Texts Math. 52. Berlin, New York: Springer 1977Google Scholar
  5. 5.
    Hironaka, H.: Resolution of singularities of an algebraic variety over a field of characteristic zero. Ann. Math. 79, 109–326 (1964)MATHGoogle Scholar
  6. 6.
    Ishii, S., Milman, P.: The geometric minimal models of analitic spaces. Math. Ann. 323, 437–451 (2002)CrossRefMathSciNetMATHGoogle Scholar
  7. 7.
    de Jong, A.J.: Smoothness, semi-stability and alterations. Publ. Math., Inst. Hautes Étud. Sci. 83, 51–93 (1996)Google Scholar
  8. 8.
    Kamoi, Y., Kurano, K.: On maps of Grothendieck groups induced by completion. J. Algebra 254, 21–43 (2002)CrossRefMathSciNetMATHGoogle Scholar
  9. 9.
    Kurano, K.: An approach to the characteristic free Dutta multiplicities. J. Math. Soc. Jap. 45, 369–390 (1993)MathSciNetMATHGoogle Scholar
  10. 10.
    Kurano, K.: A remark on the Riemann–Roch formula for affine schemes associated with Noetherian local rings. Tohoku Math. J., II. Ser. 48, 121–138 (1996)Google Scholar
  11. 11.
    Kurano, K.: Test modules to calculate Dutta Multiplicities. J. Algebra 236, 216–235 (2001)CrossRefMathSciNetMATHGoogle Scholar
  12. 12.
    Kurano, K.: On Roberts rings. J. Math. Soc. Jap. 53, 333–355 (2001)MathSciNetMATHGoogle Scholar
  13. 13.
    Kurano, K.: Roberts rings and Dutta multiplicities. Geometric and combinatorial aspects of commutative algebra, pp. 273–287. Lect. Notes Pure Appl. Math. 217. New York: Marcel Dekker 2001Google Scholar
  14. 14.
    Kurano, K., Roberts, P.C.: Adams operations, localized Chern characters, and the positivity of Dutta multiplicity in characteristic 0. Trans. Am. Math. Soc. 352, 3103–3116 (2000)CrossRefMathSciNetMATHGoogle Scholar
  15. 15.
    Kurano, K., Singh, A.K.: Todd classes of affine cones of Grassmannians. Int. Math. Res. Not. 35, 1841–1855 (2002)CrossRefMathSciNetMATHGoogle Scholar
  16. 16.
    Levine, M.: Localization on singular varieties. Invent. Math. 91, 423–464 (1988)MathSciNetMATHGoogle Scholar
  17. 17.
    Lewis, J.D.: A survey of the Hodge conjecture, 2nd edition. CRM Monogr. Ser. 10. Providence, RI: Am. Math. Soc. 1999Google Scholar
  18. 18.
    Lütkebohmert, W.: On compactification of schemes. Manuscr. Math. 80, 95–111 (1993)MathSciNetGoogle Scholar
  19. 19.
    Matsumura, H.: Commutative ring theory. Camb. Stud. Adv. Math. 8. Cambridge, New York: Cambridge Univ. Press 1989Google Scholar
  20. 20.
    Miller, C.M., Singh, A.K.: Intersection multiplicities over Gorenstein rings. Math. Ann 317, 155–171 (2000)CrossRefMathSciNetMATHGoogle Scholar
  21. 21.
    Monsky, P.: The Hilbert–Kunz function. Math. Ann. 263, 43–49 (1983)MathSciNetMATHGoogle Scholar
  22. 22.
    Nagata, M.: Local Rings. Interscience Tracts in Pure and Appl. Math. New York: Wiley 1962Google Scholar
  23. 23.
    Nagata, M.: A generalization of the imbedding problem of an abstract variety in a complete variety. J. Math. Kyoto Univ. 3, 89–102 (1963)MATHGoogle Scholar
  24. 24.
    Ogoma, T.: General Néron desingularization based on the idea of Popescu. J. Algebra 167, 57–84 (1994)CrossRefMathSciNetMATHGoogle Scholar
  25. 25.
    Popescu, D.: General Néron desingularization and approximation. Nagoya Math. J. 104, 85–115 (1986)MathSciNetMATHGoogle Scholar
  26. 26.
    Roberts, P.C.: The vanishing of intersection multiplicities and perfect complexes. Bull. Am. Math. Soc. 13, 127–130 (1985)MathSciNetMATHGoogle Scholar
  27. 27.
    Roberts, P.C.: Local Chern characters and intersection multiplicities. Proc. Symp. Pure Math. 46, 389–400 (1987)MATHGoogle Scholar
  28. 28.
    Roberts, P.C.: MacRae invariant and the first local chern character. Trans. Am. Math. Soc. 300, 583–591 (1987)MathSciNetMATHGoogle Scholar
  29. 29.
    Roberts, P.C., Srinivas, V.: Modules of finite length and finite projective dimension. Invent. Math. 151, 1–27 (2003)CrossRefMathSciNetMATHGoogle Scholar
  30. 30.
    Serre, J.-P.: Algèbre locale, Multiplicités. Lect. Notes Math. 11. Berlin, New York: Springer 1965Google Scholar
  31. 31.
    Srinivas, V.: Algebraic K-theory, Second edition. Prog. Math. 90. Boston, MA: Birkhäuser 1996Google Scholar
  32. 32.
    Swan, R.: K-theory of quadratic hypersurfaces. Ann. Math. 122, 113–154 (1985)MathSciNetMATHGoogle Scholar
  33. 33.
    Thomason, R.W., Trobaugh, T.: Higher algebraic K-theory of schemes and of derived categories. The Grothendieck Festschrift, Vol. III, pp. 247–435, Prog. Math. 88. Boston, MA: Birkhäuser 1990Google Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  1. 1.Department of MathematicsMeiji UniversityKawasakiJapan

Personalised recommendations