Inventiones mathematicae

, Volume 157, Issue 3, pp 455–518 | Cite as

Néron models, Lie algebras, and reduction of curves of genus one

Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abbes, A., Ullmo, E.: À propos de la conjecture de Manin pour les courbes elliptiques modulaires. Compos. Math. 103, 269–286 (1996)MathSciNetMATHGoogle Scholar
  2. 2.
    An, S.-Y., Kim, S.-Y., Marshall, D., Marshall, S., McCallum, W., Perlis, A.: Jacobians of Genus One Curves. J. Number Theory 90, 304–315 (2001)CrossRefMathSciNetMATHGoogle Scholar
  3. 3.
    Anantharaman, S.: Schémas en groupes, espaces homogènes et espaces algébriques sur une base de dimension 1. Bull. Soc. Math. Fr. 33, 5–79 (1973)MATHGoogle Scholar
  4. 4.
    Artin, M., Winters, G.: Degenerated fibres and stable reduction of curves. Topology 10, 373–383 (1971)CrossRefMATHGoogle Scholar
  5. 5.
    Bégueri, L.: Dualité sur un corps local à corps résiduel algébriquement clos. Bull. Soc. Math. Fr. Mém. no 4 (1980)Google Scholar
  6. 6.
    Bertapelle, A.: Local flat duality of abelian varieties. Manuscr. Math. 111, 141–161 (2003)CrossRefMathSciNetMATHGoogle Scholar
  7. 7.
    Bosch, S., Lütkebohmert, W., Raynaud, M.: Néron Models. Ergebnisse der Math., 3. Folge, 21. Berlin: Springer 1990Google Scholar
  8. 8.
    Bosch, S., Liu, Q.: Rational points on the group of components of a Néron model. Manuscr. Math. 98, 275–293 (1999)CrossRefMathSciNetMATHGoogle Scholar
  9. 9.
    Chai, C.-L., Yu, J.-K.: Congruences of Néron models for tori and the Artin conductor. Ann. Math. 154, 347–382 (2001)MathSciNetMATHGoogle Scholar
  10. 10.
    Chai, C.-L.: Néron models for semiabelian varieties: congruences change of base field. Asian J. Math. 4, 715–736 (2000)MathSciNetMATHGoogle Scholar
  11. 11.
    Cossec, F., Dolgachev, I.:Enriques surfaces I. Progress in Mathematics 76. Boston: Birkhäuser 1989Google Scholar
  12. 12.
    Deligne, P.: Appendice 3 à une ‘Lettre à Quillen’. Unpublished 1985Google Scholar
  13. 13.
    Demazure, M., Gabriel, P.: Introduction to algebraic geometry and algebraic groups. North-Holland Math. Stud. 39. North-Holland 1980Google Scholar
  14. 14.
    Fresnel, J., van der Put, M.: Rigid analytic geometry and its applications. Progress in Mathematics 218. Boston: Birkhäuser 2004Google Scholar
  15. 15.
    Gonzalez-Aviles, C.: Brauer groups and Tate-Shafarevich groups. J. Math. Sci. Tokyo 10, 391–419 (2003)MathSciNetGoogle Scholar
  16. 16.
    Gordon, W.: Linking the conjectures of Artin-Tate and Birch-Swinnerton-Dyer. Compos. Math. 38, 163–199 (1979)MathSciNetMATHGoogle Scholar
  17. 17.
    Grothendieck, A., Demazure, M.:Schémas en groupes I, II, III. Lect. Notes Math. 151, 152, 153. Berlin: Springer 1970Google Scholar
  18. 18.
    Grothendieck, A., Berthelot, P., Illusie, L.: Théorie des intersections et théorème de Riemann-Roch. Lect. Notes Math. 225. Berlin: Springer 1971Google Scholar
  19. 19.
    Grothendieck, A., Dieudonné, J.: Eléments de géométrie algébrique. Publ. Math., Inst. Hautes Étud. Sci. 24, 28, 32 (1962–1966)Google Scholar
  20. 20.
    Grothendieck, A.: Le groupe de Brauer III. In: Dix exposés sur la cohomologie des schémas. North Holland 1968Google Scholar
  21. 21.
    Harbourne, B., Lang, W.: Multiple fibers on rational elliptic surfaces. Trans. Am. Math. Soc. 307, 205–223 (1988)MathSciNetMATHGoogle Scholar
  22. 22.
    Hartshorne, R.: Algebraic Geometry. Grad. Texts Math. 52. New York: Springer 1977Google Scholar
  23. 23.
    Howe, E.: Infinite families of pairs of curves over ℚ with isomorphic Jacobians. Preprint arXiv (May 2003)Google Scholar
  24. 24.
    Illusie, L.: Complex cotangent and deformations of torsors and group schemes. Lect. Notes Math. 274, 159–189. Berlin: Springer 1972Google Scholar
  25. 25.
    Kato, K.: Galois cohomology of complete discrete valuation fields. Lect. Notes Math. 967, 215–238. Berlin: Springer 1982Google Scholar
  26. 26.
    Katsura, T., Ueno, K.: Multiple singular fibers of type Ga of elliptic surfaces in characteristic p. Algebraic and Topological Theories (Kinosaki, 1984), 405–429, Tokyo: Kinokuniya 1986Google Scholar
  27. 27.
    Katsura, T., Ueno, K.: On elliptic surfaces in characteristic p. Math. Ann. 272, 291–330 (1985)MathSciNetGoogle Scholar
  28. 28.
    Knudson, D.: Algebraic Spaces. Lect. Notes Math. 203. Berlin: Springer 1971Google Scholar
  29. 29.
    Knudsen, F., Mumford, D.: The projectivity of the moduli space of stable curve, I: Preliminaries on “det” and “Div”. Math. Scand. 39, 19–55 (1976)MATHGoogle Scholar
  30. 30.
    Kurihara, M.: Abelian extensions of an absolutely unramified local field with general residue field. Invent. Math. 93, 451–480 (1988)MathSciNetMATHGoogle Scholar
  31. 31.
    Lang, S., Tate, J.: Principal homogeneous spaces over abelian varieties. Am. J. Math. 80, 659–684 (1958)MATHGoogle Scholar
  32. 32.
    Lewin-Ménégaux, R.: Modèles minimaux de torseurs. C. R. Acad. Sci., Paris, Sér. I, Math. 297, 257–260 (1983)Google Scholar
  33. 33.
    Lichtenbaum, S.: Duality theorems for curves over p-adic fields. Invent. Math. 7, 120–136 (1969)MATHGoogle Scholar
  34. 34.
    Liu, Q.: Algebraic geometry and arithmetic curves. Oxf. Grad. Texts Math. 6. Oxford: Oxford Univ. Press 2002Google Scholar
  35. 35.
    Liu, Q.: Modèles minimaux des courbes de genre deux. J. Reine Angew. Math. 453, 137–164 (1994)MathSciNetMATHGoogle Scholar
  36. 36.
    Liu, Q., Lorenzini, D.: Special fibers of Néron models and wild ramification. J. Reine Angew. Math. 532, 179–222 (2001)MathSciNetMATHGoogle Scholar
  37. 37.
    Lorenzini, D.: Reduction in the case of imperfect residue fields. Preprint (2001)Google Scholar
  38. 38.
    Messing, W.: The crystals associated to Barsotti-Tate groups: with applications to abelian schemes. Lect. Notes Math. 264. Berlin: Springer 1972Google Scholar
  39. 39.
    Milne, J.: On a conjecture of Artin and Tate. Ann. Math. 102, 517–533 (1975)MATHGoogle Scholar
  40. 40.
    Milne, J.: Étale cohomology. Princeton Math. Ser. 33. Princeton: Princeton University Press 1980Google Scholar
  41. 41.
    Milne, J.: Comparison of the Brauer group with the Tate-Shafarevic group. J. Fac. Sci. Tokyo 28, 735–743 (1982)MATHGoogle Scholar
  42. 42.
    Milne, J.: Arithmetic Duality Theorems. Academic Press 1986Google Scholar
  43. 43.
    Moret-Bailly, L.: Métriques permises. In: Séminaire sur les pinceaux arithmétiques: la conjecture de Mordell, ed. by L. Szpiro. Astérisque 127, 29–87 (1985)Google Scholar
  44. 44.
    Moody R., Pianzola, A.: Lie Algebras with Triangular Decompositions. CMS. John Wiley and Sons 1995Google Scholar
  45. 45.
    Mumford, D.: Stability of projective varieties. Enseign. Math. 23, 39–110 (1977)MATHGoogle Scholar
  46. 46.
    Mumford, D.: Abelian Varieties. Oxford Univiversity Press 1974Google Scholar
  47. 47.
    Néron, A.: Modèles minimaux des espaces principaux homogènes sur les courbes elliptiques. In: Proceedings of a conference on local fields, ed. by T. Springer. Springer 1967Google Scholar
  48. 48.
    Néron, A.: Modèles minimaux et différentielles. Symp. Math., Vol. III (INDAM, Rome, 1968/69), pp. 279–293. London: Academic PressGoogle Scholar
  49. 49.
    Poonen, B., Stoll, M.: The Cassels-Tate pairing on polarized abelian varieties. Ann. Math. 150, 1109–1149 (1999)MathSciNetMATHGoogle Scholar
  50. 50.
    Raynaud, M.: Surfaces elliptiques et quasi-elliptiques. Typewritten notes, circa 1975Google Scholar
  51. 51.
    Raynaud, M.: Spécialisation du foncteur de Picard. Publ. Math., Inst. Hautes Étud. Sci. 38, 27–76 (1970)Google Scholar
  52. 52.
    Raynaud, M.: Passage au quotient par une relation d’équivalence plate. In: Proceedings of a conference on local fields, ed. by T. Springer. Springer 1967Google Scholar
  53. 53.
    Roux, B.: Sur le groupe de Brauer d’un corps local à corps résiduel imparfait. Groupe d’étude d’analyse ultramétrique 1985/86. Publ. Math. Univ. Paris VII 29, 85–98 (1988)Google Scholar
  54. 54.
    Saito, T.: Conductor, discriminant, and the Noether formula of arithmetic surfaces. Duke Math. J. 57, 151–173 (1988)MathSciNetMATHGoogle Scholar
  55. 55.
    Sen, S.: On automorphisms of local fields. Ann. Math. 90, 33–46 (1969)MATHGoogle Scholar
  56. 56.
    Serre, J.-P.: Corps Locaux. Paris: Hermann 1968Google Scholar
  57. 57.
    Serre, J.-P.: Facteurs locaux des fonctions zêta des variétés algébriques. Séminaire Delange-Pisot-Poitou 1969/1970, no. 19 (or no 87 in Collected Works, vol. 2. Springer 1986)Google Scholar
  58. 58.
    Silverman, J.: Advanced Topics in the Arithmetic of Elliptic Curves. Grad. Texts Math. 151. New York: Springer 1994Google Scholar
  59. 59.
    Spriano, L.: Well ramified extensions of complete discrete valuation fields with application to the Kato conductor. Can. J. Math. 52, 1269–1309 (2000)MathSciNetMATHGoogle Scholar
  60. 60.
    Szydlo, M.: Elliptic fibers over non-perfect residue fields. J. Number Theory 104, 75–99 (2004)CrossRefMATHGoogle Scholar
  61. 61.
    Tate, J.: On the conjectures of Birch and Swinnerton-Dyer and a geometric analogue. Séminaire Bourbaki 1965/66, Exposé 306. New York: BenjaminGoogle Scholar
  62. 62.
    Tamme, G.: Introduction to étale cohomology. Universitext. Springer 1994Google Scholar
  63. 63.
    Urabe, T.: The bilinear form of the Brauer group of a surface. Invent. Math. 125, 557–585 (1996)CrossRefMathSciNetMATHGoogle Scholar
  64. 64.
    Viehweg, E.: Invarianten der degenerierten Fasern in lokalen Familien von Kurven. J. Reine Angew. Math. 293, 284–308 (1977)MATHGoogle Scholar
  65. 65.
    Vvedenskii, O.: Duality on elliptic curves over a local field I. Izv. Akad. Nauk SSSR Ser. Mat. 28, 1091–1112 (1964); English trans., Am. Math. Soc. Transl. (2) 63, 195–216 (1967)Google Scholar
  66. 66.
    Vvedenskii, O.: Duality on elliptic curves over a local field II. Izv. Akad. Nauk SSSR Ser. Mat. 30, 891-922 (1966); English trans., Am. Math. Soc. Transl. (2) 71, 135–167 (1968)Google Scholar
  67. 67.
    Vvedenskii, O.: On the Galois cohomology of elliptic curves defined over a local field. Math. USSR Sbornik 12, 477–488 (1970)Google Scholar
  68. 68.
    Waterhouse W., Weisfeiler, B.: One-dimensional affine group schemes. J. Algebra 66, 550–568 (1980)MathSciNetMATHGoogle Scholar
  69. 69.
    Winters, G.: On the existence of certain families of curves. Am. J. Math. 96, 215–228 (1974)MATHGoogle Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  1. 1.CNRS, Laboratoire A2XUniversité de Bordeaux ITalenceFrance
  2. 2.Department of MathematicsUniversity of GeorgiaAthensUSA
  3. 3.Université de Paris-SudOrsayFrance

Personalised recommendations