Inventiones mathematicae

, Volume 157, Issue 2, pp 405–418

The integral K-theoretic Novikov conjecture for groups with finite asymptotic dimension

Article

Abstract

The integral assembly map in algebraic K-theory is split injective for any geometrically finite discrete group with finite asymptotic dimension.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bell, G.: Asymptotic properties of groups acting on complexes. Preprint (2002), available as arXiv:math.GR/0212032Google Scholar
  2. 2.
    Bell, G., Dranishnikov, A.: On asymptotic dimension of groups. Alg. Geom. Topol. 1, 57–71 (2001)CrossRefGoogle Scholar
  3. 3.
    Carlsson, G.: Bounded K-theory and the assembly map in algebraic K-theory. In: Ferry, S.C., Ranicki, A., Rosenberg, J. (eds.), Novikov conjectures, index theorems and rigidity, Vol. 2, pp. 5–127. Cambridge University Press 1995Google Scholar
  4. 4.
    Carlsson, G.: On the algebraic K-theory of infinite product categories. K-Theory 9, 305–322 (1995)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Carlsson, G., Goldfarb, B.: On homological coherence of discrete groups. PreprintGoogle Scholar
  6. 6.
    Dranishnikov, A.: On hypersphericity of manifolds with finite asymptotic dimension. Trans. Am. Math. Soc. 355, 155–167 (2003)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Dranishnikov, A.: Asymptotic topology. Russ. Math. Surv. 55, 1085–1129 (2000)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Dranishnikov, A., Januszkiewicz, T.: Every Coxeter group acts amenably on a compact space. Topology Proc. 24, 135–141 (1999)MathSciNetGoogle Scholar
  9. 9.
    Gromov, M.: Asymptotic invariants of infinite groups. In: Geometric groups theory, Vol. 2. Cambridge University Press 1993Google Scholar
  10. 10.
    Yu, G.: The Novikov conjecture for groups with finite asymptotic dimension. Ann. Math. 147, 325–355 (1998)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  1. 1.Department of MathematicsStanford UniversityStanfordUSA
  2. 2.Department of Mathematics and StatisticsSUNYAlbanyUSA

Personalised recommendations