Inventiones mathematicae

, Volume 157, Issue 2, pp 329–343 | Cite as

On the homotopy types of compact Kähler and complex projective manifolds

  • Claire Voisin
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Beauville, A.: Variétés kähleriennes dont la première classe de Chern est nulle. J. Differ. Geom. 18, 755–782 (1983)MathSciNetGoogle Scholar
  2. 2.
    Birkenhake, Ch., Lange, H.: Complex abelian varieties. Grundlehren Math. Wiss. 302. Berlin, Heidelberg, Tokyo, New York: Springer-Verlag 1992Google Scholar
  3. 3.
    Debarre, O.: Tores et variétés abéliennes complexes. Cours spécialisés 6. SMF 1999Google Scholar
  4. 4.
    Deligne, P., Griffiths, Ph., Morgan, J., Sullivan, D.: Real homotopy theory of Kähler manifolds. Invent. Math. 2, 245–274 (1975)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Demailly, J.-P., Eckl, T., Peternell, T.: Line bundles on complex tori and a conjecture of Kodaira. Preprint math.AG/0212243Google Scholar
  6. 6.
    Kodaira, K.: On Kähler varieties of restricted type (an intrinsic characterization of algebraic varieties). Ann. Math. 60, 28–48 (1954)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Kodaira, K.: On compact complex analytic surfaces, I. Ann. Math. 71, 111–152 (1960)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Shioda, T.: On the Picard number of a complex projective variety. Ann. Sci. Éc. Norm. Supér., IV Sér. 14, 303–321 (1981)MathSciNetGoogle Scholar
  9. 9.
    Voisin, C.: Hodge Theory and Complex Algebraic Geometry, I. Camb. Stud. Adv. Math. 76. Cambridge Univ. Press 2002Google Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  • Claire Voisin
    • 1
  1. 1.Institut de mathématiques de JussieuCNRS, UMR 7586ParisFrance

Personalised recommendations