Inventiones mathematicae

, Volume 157, Issue 2, pp 329–343 | Cite as

On the homotopy types of compact Kähler and complex projective manifolds

  • Claire Voisin
Article

Keywords

Galois Group Abelian Variety Homotopy Type Exceptional Divisor Hodge Structure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Beauville, A.: Variétés kähleriennes dont la première classe de Chern est nulle. J. Differ. Geom. 18, 755–782 (1983)MathSciNetGoogle Scholar
  2. 2.
    Birkenhake, Ch., Lange, H.: Complex abelian varieties. Grundlehren Math. Wiss. 302. Berlin, Heidelberg, Tokyo, New York: Springer-Verlag 1992Google Scholar
  3. 3.
    Debarre, O.: Tores et variétés abéliennes complexes. Cours spécialisés 6. SMF 1999Google Scholar
  4. 4.
    Deligne, P., Griffiths, Ph., Morgan, J., Sullivan, D.: Real homotopy theory of Kähler manifolds. Invent. Math. 2, 245–274 (1975)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Demailly, J.-P., Eckl, T., Peternell, T.: Line bundles on complex tori and a conjecture of Kodaira. Preprint math.AG/0212243Google Scholar
  6. 6.
    Kodaira, K.: On Kähler varieties of restricted type (an intrinsic characterization of algebraic varieties). Ann. Math. 60, 28–48 (1954)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Kodaira, K.: On compact complex analytic surfaces, I. Ann. Math. 71, 111–152 (1960)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Shioda, T.: On the Picard number of a complex projective variety. Ann. Sci. Éc. Norm. Supér., IV Sér. 14, 303–321 (1981)MathSciNetGoogle Scholar
  9. 9.
    Voisin, C.: Hodge Theory and Complex Algebraic Geometry, I. Camb. Stud. Adv. Math. 76. Cambridge Univ. Press 2002Google Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  • Claire Voisin
    • 1
  1. 1.Institut de mathématiques de JussieuCNRS, UMR 7586ParisFrance

Personalised recommendations