Inventiones mathematicae

, Volume 155, Issue 3, pp 605–680 | Cite as

Gerbes of chiral differential operators. II. Vertex algebroids



Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Beilinson, A., Bernstein, J.: A proof of Jantzen conjectures. I.M. Gelfand Seminar, Adv. in Soviet Math. 16, Part 1, pp. 1–50. Providence, RI: Am. Math. Soc. 1993 Google Scholar
  2. 2.
    Beilinson, A., Drinfeld, V.: Chiral algebras. Preprint Google Scholar
  3. 3.
    Beilinson, A., Kazhdan, D.: Flat projective connections. Unpublished manuscript Google Scholar
  4. 4.
    Beilinson, A., Schechtman, V.: Determinant bundles and Virasoro algebras. Commun. Math. Phys. 118, 651–701 (1988) MathSciNetMATHGoogle Scholar
  5. 5.
    Borcherds, R.: Vertex algebras, Kac–Moody Lie algebras, and the Monster. Proc. Natl. Acad. Sci. USA 83, 3068–3071 (1986) Google Scholar
  6. 6.
    Gorbounov, V., Malikov, F., Schechtman, V.: Gerbes of chiral differential operators. III. In: The orbit method in Geometry and Physics. In honor of A.A. Kirillov. Progress in Mathematics 213, 73–100. Boston, Basel, Berlin: Birkhäuser 2003 Google Scholar
  7. 7.
    Kac, V.: Vertex algebras for beginners. Second edition. University Lecture Series 10. Providence, RI: Am. Math. Soc. 1998 Google Scholar
  8. 8.
    Malikov, F., Schechtman, V., Vaintrob, A.: Chiral de Rham complex. Commun. Math. Phys. 204, 439–473 (1999)CrossRefMathSciNetMATHGoogle Scholar

Copyright information

© Springer-Verlag 2003

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of KentuckyLexingtonUSA
  2. 2.Department of MathematicsUniversity of Southern CaliforniaLos AngelesUSA
  3. 3.Laboratoire de Mathématiques Emile PicardUniversité Paul SabatierToulouseFrance

Personalised recommendations