Inventiones mathematicae

, Volume 155, Issue 3, pp 605–680 | Cite as

Gerbes of chiral differential operators. II. Vertex algebroids

Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Beilinson, A., Bernstein, J.: A proof of Jantzen conjectures. I.M. Gelfand Seminar, Adv. in Soviet Math. 16, Part 1, pp. 1–50. Providence, RI: Am. Math. Soc. 1993 Google Scholar
  2. 2.
    Beilinson, A., Drinfeld, V.: Chiral algebras. Preprint Google Scholar
  3. 3.
    Beilinson, A., Kazhdan, D.: Flat projective connections. Unpublished manuscript Google Scholar
  4. 4.
    Beilinson, A., Schechtman, V.: Determinant bundles and Virasoro algebras. Commun. Math. Phys. 118, 651–701 (1988) MathSciNetMATHGoogle Scholar
  5. 5.
    Borcherds, R.: Vertex algebras, Kac–Moody Lie algebras, and the Monster. Proc. Natl. Acad. Sci. USA 83, 3068–3071 (1986) Google Scholar
  6. 6.
    Gorbounov, V., Malikov, F., Schechtman, V.: Gerbes of chiral differential operators. III. In: The orbit method in Geometry and Physics. In honor of A.A. Kirillov. Progress in Mathematics 213, 73–100. Boston, Basel, Berlin: Birkhäuser 2003 Google Scholar
  7. 7.
    Kac, V.: Vertex algebras for beginners. Second edition. University Lecture Series 10. Providence, RI: Am. Math. Soc. 1998 Google Scholar
  8. 8.
    Malikov, F., Schechtman, V., Vaintrob, A.: Chiral de Rham complex. Commun. Math. Phys. 204, 439–473 (1999)CrossRefMathSciNetMATHGoogle Scholar

Copyright information

© Springer-Verlag 2003

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of KentuckyLexingtonUSA
  2. 2.Department of MathematicsUniversity of Southern CaliforniaLos AngelesUSA
  3. 3.Laboratoire de Mathématiques Emile PicardUniversité Paul SabatierToulouseFrance

Personalised recommendations