Inventiones mathematicae

, Volume 155, Issue 3, pp 451–513

# Time decay for solutions of Schrödinger equations with rough and time-dependent potentials

Article

## Abstract

In this paper we establish dispersive estimates for solutions to the linear Schrödinger equation in three dimensions
$$\frac{1}{i}\partial_t \psi - \triangle \psi + V\psi = 0,\qquad \psi(s)=f$$
(0.1)
where V(t,x) is a time-dependent potential that satisfies the conditions
$$\sup_{t}\|V(t,\cdot)\|_{L^{\frac{3}{2}}(\mathbb{R}^3)} + \sup_{x\in\mathbb{R}^3}\int_{\mathbb{R}^3} \int_{-\infty}^\infty\frac{|V(\hat{\tau},x)|}{|x-y|}\,d\tau\,dy < c_0.$$
Here c0 is some small constant and $$V(\hat{\tau},x$$ denotes the Fourier transform with respect to the first variable. We show that under these conditions (0.1) admits solutions ψ(·)∈Lt(L2x(ℝ3))∩L2t(L6x(ℝ3)) for any fL2(ℝ3) satisfying the dispersive inequality
$$\|\psi(t)\|_{\infty} \le C|t-s|^{-\frac32}\,\|f\|_1 \text{\ \ for all times t,s.}$$
(0.2)
For the case of time independent potentials V(x), (0.2) remains true if
$$\int_{\mathbb{R}^6} \frac{|V(x)|\;|V(y)|}{|x-y|^2} \, dxdy <(4\pi)^2\text{\ \ \ and\ \ \ }\|V\|_{\mathcal{K}}:=\sup_{x\in\mathbb{R}^3}\int_{\mathbb{R}^3} \frac{|V(y)|}{|x-y|}\,dy<4\pi.$$
We also establish the dispersive estimate with an ε-loss for large energies provided $$\|V\|_{\mathcal{K}}+\|V\|_2<\infty$$.

Finally, we prove Strichartz estimates for the Schrödinger equations with potentials that decay like |x|-2-ε in dimensions n≥3, thus solving an open problem posed by Journé, Soffer, and Sogge.

## Preview

### References

1. 1.
Agmon, S.: Spectral properties of Schrödinger operators and scattering theory. Ann. Sc. Norm. Super. Pisa, Cl. Sci., IV. Ser. 2, 151–218 (1975) Google Scholar
2. 2.
Aizenman, M., Simon, B.: Brownian motion and Harnack inequality for Schrödinger operators. Commun. Pure Appl. Math. 35, 209–273 (1982)
3. 3.
Artbazar, G., Yajima, K.: The L p-continuity of wave operators for one dimensional Schrödinger operators. J. Math. Sci. Tokyo 7, 221–240 (2000)
4. 4.
Ben-Artzi, M., Klainerman, S.: Decay and regularity for the Schrödinger equation. J. Anal. Math. 58, 25–37 (1992)
5. 5.
Bourgain, J.: Growth of Sobolev norms in linear Schrödinger equations with quasi-periodic potential. Commun. Math. Phys. 204, 207–247 (1999)
6. 6.
Bourgain, J.: On growth of Sobolev norms in linear Schrödinger equations with smooth time dependent potential. J. Anal. Math. 77, 315–348 (1999)
7. 7.
Bourgain, J.: Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations. I. Schrödinger equations. Geom. Funct. Anal. 3, 107–156 (1993)
8. 8.
Burq, N., Gerard, P., Tzvetkov, N.: Strichartz inequalities and the nonlinear Schrodinger equation on compact manifolds. Journées “Equations aux Dérivées Partielles” (2001), Exp. No. 5 Google Scholar
9. 9.
Christ, M., Kiselev, A.: Maximal functions associated with filtrations. J. Funct. Anal. 179, 409–425 (2001)
10. 10.
Davies, E.B.: Time-dependent scattering theory. Math. Ann. 210, 149–162 (1974)
11. 11.
Ikebe, T.: Eigenfunction expansions associated with the Schroedinger operators and their applications to scattering theory. Arch. Ration. Mech. Anal. 5, 1–34 (1960)
12. 12.
Jensen, A.: Spectral properties of Schrödinger operators and time-decay of the wave functions results in L 2(R m), m≥5. Duke Math. J. 47, 57–80 (1980)
13. 13.
Jensen, A.: Spectral properties of Schrödinger operators and time-decay of the wave functions. Results in L 2(R 4). J. Math. Anal. Appl. 101, 397–422 (1984) Google Scholar
14. 14.
Jensen, A., Kato, T.: Spectral properties of Schrödinger operators and time-decay of the wave functions. Duke Math. J. 46, 583–611 (1979)
15. 15.
Jensen, A., Nakamura, S.: L p and Besov estimates for Schrödinger Operators. Advanced Studies in Pure Math. 23. Spectral and Scattering Theory and Applications (1994), 187–209 Google Scholar
16. 16.
Journé, J.-L., Soffer, A., Sogge, C.D.: Decay estimates for Schrödinger operators. Commun. Pure Appl. Math. 44, 573–604 (1991)
17. 17.
Howland, J.S.: Born series and scattering by time-dependent potentaials. Rocky Mt. J. Math. 10, 521–531 (1980)
18. 18.
Howland, J.S.: Stationary scattering theory for time-dependent Hamiltonians. Math. Ann. 207, 315–335 (1974)
19. 19.
Kato, T.: Wave operators and similarity for some non-selfadjoint operators. Math. Ann. 162, 258–279 (1965/1966) Google Scholar
20. 20.
Keel, M., Tao, T.: Endpoint Strichartz estimates. Am. J. Math. 120, 955–980 (1998)
21. 21.
Kuroda, S.T.: Scattering theory for differential operators. I. Operator theory. J. Math. Soc. Japan 25, 75–104 (1973)
22. 22.
Kuroda, S.T.: Scattering theory for differential operators. II. Self-adjoint elliptic operators. J. Math. Soc. Japan 25, 222–234 (1973) Google Scholar
23. 23.
Planchon, F., Stalker, J., Tahvildar-Zadeh, S.: L p estimates for the wave equation with the inverse-square potential. Discrete Contin. Dyn. Syst. 9, 427–442 (2003)
24. 24.
Rauch, J.: Local decay of scattering solutions to Schrödinger’s equation. Commun. Math. Phys. 61, 149–168 (1978)
25. 25.
Reed, M., Simon, B.: Methods of modern mathematical physics. IV. Analysis of operators. New York, London: Academic Press [Harcourt Brace Jovanovich, Publishers] 1978 Google Scholar
26. 26.
Simon, B.: Quantum mechanics for Hamiltonians defined as quadratic forms. Princeton Series in Physics. Princeton, N.J.: Princeton University Press 1971 Google Scholar
27. 27.
Simon, B.: Schrödinger semigroups. Bull. Am. Math. Soc. 7, 447–526 (1982)
28. 28.
Smith, H., Sogge, C.: Global Strichartz estimates for nontrapping perturbations of the Laplacean. Commun. Partial Differ. Equations 25, 2171–2183 (2000)
29. 29.
Staffilani, G., Tataru, D.: Strichartz estimates for a Schrodinger operator with nonsmooth coefficients. Commun. Partial Differ. Equations 27, 1337–1372 (2002)
30. 30.
Stein, E.: Bejing lectures in harmonic analysis. Princeton University Press 1986 Google Scholar
31. 31.
Strichartz, R.: Restrictions of Fourier transforms to quadratic surfaces and decay of solutions of wave equations. Duke Math. J. 44, 705–714 (1977)
32. 32.
Weder, R.: L p-L p estimates for the Schrödinger equation on the line and inverse scattering for the nonlinear Schrödinger equation with a potential. J. Funct. Anal. 170, 37–68 (2000)
33. 33.
Yajima, K.: Existence of solutions for Schrödinger evolution equations. Commun. Math. Phys. 110, 415–426 (1987)
34. 34.
Yajima, K.: The W k,p-continuity of wave operators for Schrödinger operators. J. Math. Soc. Japan 47, 551–581 (1995)
35. 35.
Yajima, K.: L p-boundedness of wave operators for two-dimensional Schrödinger operators. Commun. Math. Phys. 208, 125–152 (1999)