Inventiones mathematicae

, Volume 155, Issue 2, pp 363–388 | Cite as

Existence of C1 critical subsolutions of the Hamilton-Jacobi equation

  • Albert Fathi
  • Antonio Siconolfi


Critical Subsolutions 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bangert, V.: Minimal measures and minimizing closed normal one-currents. Geom. Funct. Anal. 9, 413–427 (1999) CrossRefMathSciNetzbMATHGoogle Scholar
  2. 2.
    Barles, G.: Solutions de viscosité des équations de Hamilton-Jacobi. Paris: Springer 1994 Google Scholar
  3. 3.
    Bardi, M., Capuzzo-Dolcetta, I.: Optimal control and viscosity solutions of Hamilton-Jacobi-Bellman equations. Boston, MA: Birkhäuser Boston Inc. 1997 Google Scholar
  4. 4.
    Buttazzo, G., Giaquinta, M., Hildebrandt, S.: One-dimensional variational problems, An introduction. Oxford Lecture Series in Mathematics and its Applications, Vol. 15. Oxford: Oxford University Press 1998 Google Scholar
  5. 5.
    Clarke, F.H.: Optimization and Nonsmooth Analysis. Canadian Mathematical Society Series of Monographs and Advanced Texts. New York: John Wiley & Sons 1983 Google Scholar
  6. 6.
    Contreras, G., Iturriaga, R., Paternain, G., Paternain, M.: Lagrangian graphs, minimizing measures and Mañé’s critical values. Geom. Funct. Anal. 8, 788–809 (1998) CrossRefMathSciNetzbMATHGoogle Scholar
  7. 7.
    Contreras, G.: Action potential and weak KAM solutions. Calc. Var. Partial Differ. Equ. 13, 427–458 (2001) CrossRefMathSciNetzbMATHGoogle Scholar
  8. 8.
    Dugundji, J.: Topology. Boston: Allyn and Bacon, Inc. 1970 Google Scholar
  9. 9.
    Fathi, A.: Weak KAM Theorem and Lagrangian Dynamics. Cambridge University Press 2004. To appear Google Scholar
  10. 10.
    Fathi, A.: Théorème KAM faible et théorie de Mather sur les systèmes lagrangiens. C. R. Acad. Sci., Paris, Sér. I, Math. 324, 1043–1046 (1997) Google Scholar
  11. 11.
    Fathi, A.: Solutions KAM faibles conjuguées et barrières de Peierls. C. R. Acad. Sci., Paris, Sér. I, Math. 325, 649–652 (1997) Google Scholar
  12. 12.
    Fathi, A., Maderna, E.: Weak KAM theorem on non compact manifolds. To appear in NoDEA, Nonlinear Differ. Equ. Appl. Google Scholar
  13. 13.
    Gromov, M.: Metric structures for Riemannian and non-Riemannian spaces. Boston, MA: Birkhäuser Boston Inc. 1999 Google Scholar
  14. 14.
    Lions, P.L., Papanicolaou, G., Varadhan, S.R.S.: Homogenization of Hamilton-Jacobi equation. Unpublished preprint (1987) Google Scholar
  15. 15.
    Mañé, R.: Generic properties and problems of minimizing measures of Lagrangian systems. Nonlinearity 9, 273–310 (1996) CrossRefMathSciNetzbMATHGoogle Scholar
  16. 16.
    Mather, J.N.: Action minimizing measures for positive definite Lagrangian systems. Math. Z. 207, 169–207 (1991) MathSciNetzbMATHGoogle Scholar
  17. 17.
    Mather, J.N.: Variational construction of connecting orbits. Ann. Inst. Fourier 43, 1349–1386 (1993)MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer-Verlag 2003

Authors and Affiliations

  1. 1.DMI & UMPAEcole Normale SupérieureLyonFrance
  2. 2.Departimento di MatematicaUniv. ‘La Sapienza’RomaItaly

Personalised recommendations