Advertisement

Inventiones mathematicae

, Volume 155, Issue 1, pp 81–161 | Cite as

The Navier–Stokes limit of the Boltzmann equation for bounded collision kernels

  • François GolseEmail author
  • Laure Saint-RaymondEmail author
Article

Abstract

The present work establishes a Navier–Stokes limit for the Boltzmann equation considered over the infinite spatial domain R3. Appropriately scaled families of DiPerna-Lions renormalized solutions are shown to have fluctuations whose limit points (in the w-L1 topology) are governed by Leray solutions of the limiting Navier–Stokes equations. This completes the arguments in Bardos-Golse-Levermore [Commun. Pure Appl. Math. 46(5), 667–753 (1993)] for the steady case, and in Lions-Masmoudi [Arch. Ration. Mech. Anal. 158(3), 173–193 (2001)] for the time-dependent case.

Keywords

Stokes Equation Boltzmann Equation Limit Point Spatial Domain Collision Kernel 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Agoshkov, V.: Space of functions with differential difference characteristics and smoothness of solutions of the transport equation. Dokl. Akad. Nauk SSSR 276, 1289–1293 (1984) MathSciNetGoogle Scholar
  2. 2.
    Arkeryd, L., Nouri, A.: A compactness result related to the stationary Boltzmann equation in a slab with applications to the existence theory. Indiana Univ. Math. J. 44, 815–839 (1995) MathSciNetCrossRefGoogle Scholar
  3. 3.
    Asano, K.: Conference at the 4th International Workshop on Mathematical Aspects of Fluid and Plasma Dynamics. Kyoto 1991 Google Scholar
  4. 4.
    Bardos, C., Degond, P.: Global existence for the Vlasov-Poisson equation in 3 space variables with small initial data. Ann. Inst. H. Poincaré, Anal. Non Linéaire 2, 101–118 (1985) MathSciNetCrossRefGoogle Scholar
  5. 5.
    Bardos, C., Golse, F., Levermore, D.: Sur les limites asymptotiques de la théorie cinétique conduisant à la dynamique des fluides incompressibles. C. R. Acad. Sci., Paris 309, 727–732 (1989) Google Scholar
  6. 6.
    Bardos, C., Golse, F., Levermore, D.: Fluid Dynamic Limits of Kinetic Equations I: Formal Derivations. J. Stat. Phys. 63, 323–344 (1991) CrossRefGoogle Scholar
  7. 7.
    Bardos, C., Golse, F., Levermore, C.D.: Fluid Dynamic Limits of Kinetic Equations II: Convergence Proofs for the Boltzmann Equation. Commun. Pure Appl. Math. 46, 667–753 (1993) CrossRefGoogle Scholar
  8. 8.
    Bardos, C., Golse, F., Levermore, C.D.: Acoustic and Stokes Limits for the Boltzmann Equation. C. R. Acad. Sci., Paris 327, 323–328 (1999) MathSciNetCrossRefGoogle Scholar
  9. 9.
    Bardos, C., Golse, F., Levermore, C.D.: The Acoustic Limit for the Boltzmann Equation. Arch. Ration. Mech. Anal. 153, 177–204 (2000) MathSciNetCrossRefGoogle Scholar
  10. 10.
    Bardos, C., Levermore, C.D.: Kinetic Equations and an Incompressible Fluid Dynamical Limit that Recovers Viscous Heating. In preparation (2003) Google Scholar
  11. 11.
    Bardos, C., Ukai, S.: The Classical Incompressible Navier–Stokes Limit of the Boltzmann Equation. Math. Models Methods Appl. Sci. 1, 235–257 (1991) MathSciNetCrossRefGoogle Scholar
  12. 12.
    Lagha-Benabdallah, A.: Limites des équations d’un fluide compressible lorsque la compressibilité tend vers zéro. (French) Fluid dynamics (Varenna, 1982), 139–165. Lecture Notes Math. 1047. Berlin: Springer 1984 MathSciNetCrossRefGoogle Scholar
  13. 13.
    Bouchut, F.: Hypoelliptic regularity in kinetic equations. J. Math. Pures Appl. 9, 313–327 (2002) Google Scholar
  14. 14.
    Bouchut, F., Desvillettes, L.: A proof of the smoothing properties of the positive part of Boltzmann’s kernel. Rev. Mat. Iberoam. 14, 47–61 (1998) MathSciNetCrossRefGoogle Scholar
  15. 15.
    Bouchut, F., Golse, F., Pulvirenti, M.: Kinetic Equations and Asymptotic Theory, ed. by B. Perthame, L. Desvillettes, Series in Applied Mathematics 4. Paris: Gauthier-Villars 2000 Google Scholar
  16. 16.
    Caflisch, R.: The Boltzmann equation with a soft potential. I. Linear, spatially-homogeneous. Commun. Math. Phys. 74, 71–95 (1980) CrossRefGoogle Scholar
  17. 17.
    Castella, F., Perthame, B.: Estimations de Strichartz pour les équations de transport cinétique. C. R. Acad. Sci., Paris, Sér. I, Math. 322, 535–540 (1996) MathSciNetGoogle Scholar
  18. 18.
    Cercignani, C.: Mathematical Methods in Kinetic Theory. New York: Plenum Press 1990 Google Scholar
  19. 19.
    Cercignani, C., Illner, R., Pulvirenti, M.: The Mathematical Theory of Dilute Gases. New York: Springer 1994 Google Scholar
  20. 20.
    Constantin, P., Foias, C.: Navier–Stokes Equations. Chicago Lectures in Mathematics. Chicago: The University of Chicago Press 1988 Google Scholar
  21. 21.
    DeMasi, A., Esposito, R., Lebowitz, J.: Incompressible Navier–Stokes and Euler Limits of the Boltzmann Equation. Commun. Pure Appl. Math. 42, 1189–1214 (1990) CrossRefGoogle Scholar
  22. 22.
    Desvillettes, L., Golse, F.: On a model Boltzmann equation without angular cutoff. Differ. Integral Equ. 13, 567–594 (2000) MathSciNetGoogle Scholar
  23. 23.
    DiPerna, R.J., Lions, P.-L.: On the Cauchy Problem for the Boltzmann Equation: Global Existence and Weak Stability Results. Ann. Math. 130, 321–366 (1990) CrossRefGoogle Scholar
  24. 24.
    Dunford, N., Pettis, B.J.: Linear Operations on Summable Functions. Trans. Am. Math. Soc. 47, 323–392 (1940) CrossRefGoogle Scholar
  25. 25.
    Golse, F., Levermore, C.D.: The Stokes-Fourier and Acoustic Limits for the Boltzmann Equation. Commun. Pure Appl. Math. 55, 336–393 (2002) CrossRefGoogle Scholar
  26. 26.
    Golse, F., Levermore, C.D., Saint-Raymond, L.: La méthode de l’entropie relative pour les limites hydrodynamiques de modèles cinétiques. Séminaire: Equations aux Dérivées Partielles, 1999–2000, Exp. No. XIX, 23 pp., Ecole Polytech., Palaiseau 2000 Google Scholar
  27. 27.
    Golse, F., Lions, P.-L., Perthame, B., Sentis, R.: Regularity of the Moments of the Solution of a Transport Equation. J. Funct. Anal. 76, 110–125 (1988) MathSciNetCrossRefGoogle Scholar
  28. 28.
    Golse, F., Perthame, B., Sentis, R.: Un résultat de compacité pour les équations de transport et application au calcul de la limite de la valeur propre principale de l’opérateur de transport. C. R. Acad. Sci., Paris 301, 341–344 (1985) Google Scholar
  29. 29.
    Golse, F., Saint-Raymond, L.: The Navier–Stokes limit for the Boltzmann equation. C. R. Acad. Sci., Paris 333, 897–902 (2001) CrossRefGoogle Scholar
  30. 30.
    Golse, F., Saint-Raymond, L.: Velocity averaging in L 1 for the transport equation. C. R. Acad. Sci., Paris 334, 557–562 (2002) CrossRefGoogle Scholar
  31. 31.
    Golse, F., Saint-Raymond, L.: Work in preparation Google Scholar
  32. 32.
    Grad, H.: Asymptotic theory of the Boltzmann equation. II. 1963 Rarefied Gas Dynamics (Proc. 3rd Internat. Sympos., Palais de l’UNESCO, Paris, 1962), Vol. I, pp. 26–59 Google Scholar
  33. 33.
    Grenier, E.: Fluides en rotation et ondes d’inertie. C. R. Acad. Sci., Paris 321, 711–714 (1995) MathSciNetGoogle Scholar
  34. 34.
    Grothendieck, A.: Topological vector spaces. New York: Gordon Breach 1973 Google Scholar
  35. 35.
    Hilbert, D.: Mathematical Problems. International Congress of Mathematicians, Paris 1900. Translated and reprinted in Bull. Am. Math. Soc. 37, 407–436 (2000) CrossRefGoogle Scholar
  36. 36.
    Klainerman, S., Majda, A.: Singular limits of quasilinear hyperbolic systems with large parameters and the incompressible limit of compressible fluids. Commun. Pure Appl. Math. 34, 481–524 (1981) CrossRefGoogle Scholar
  37. 37.
    Lachowicz, M.: On the initial layer and the existence theorem for the nonlinear Boltzmann equation. Math. Methods Appl. Sci. 9, 342–366 (1987) MathSciNetCrossRefGoogle Scholar
  38. 38.
    Landau, L., Lifshitz, E.: Course of theoretical physics. Vol. 6. Fluid mechanics. Oxford: Pergamon Press 1987 Google Scholar
  39. 39.
    Lanford, O.: Time evolution of large classical systems. In: “Dynamical systems, theory and applications” (Rencontres, Battelle Res. Inst., Seattle, Wash., 1974), pp. 1–111. Lecture Notes Phys. 38. Berlin: Springer 1975 Google Scholar
  40. 40.
    Leray, J.: Sur le mouvement d’un fluide visqueux emplissant l’espace. Acta Math. 63, 193–248 (1934) MathSciNetCrossRefGoogle Scholar
  41. 41.
    Levermore, C.D., Masmoudi, N.: From the Boltzmann Equation to an Incompressible Navier–Stokes–Fourier System. Work in preparation Google Scholar
  42. 42.
    Lions, J.-L.: Théorèmes de trace et d’interpolation I, II. Ann. Sc. Norm. Super. Pisa, Cl. Sci., IV. Ser. 13, 389–403 (1959); 14, 317–331 (1960) Google Scholar
  43. 43.
    Lions, P.-L.: Conditions at infinity for Boltzmann’s equation. Commun. Partial. Differ. Equations 19, 335–367 (1994) CrossRefGoogle Scholar
  44. 44.
    Lions, P.-L.: Mathematical Topics in Fluid Mechanics, Vol. 1: Incompressible Models. Oxford Lecture Series in Mathematics and its Applications, 3. Oxford Science Publications. New York: The Clarendon Press, Oxford University Press 1996 Google Scholar
  45. 45.
    Lions, P.-L.: Compactness in Boltzmann’s equation via Fourier integral operators and applications I. J. Math. Kyoto Univ. 34, 391–427 (1994) MathSciNetCrossRefGoogle Scholar
  46. 46.
    Lions, P.-L.: Compactness in Boltzmann’s equation via Fourier integral operators and applications II. J. Math. Kyoto Univ. 34, 429–461 (1994) CrossRefGoogle Scholar
  47. 47.
    Lions, P.-L.: Compactness in Boltzmann’s equation via Fourier integral operators and applications III. J. Math. Kyoto Univ. 34, 539–584 (1994) MathSciNetCrossRefGoogle Scholar
  48. 48.
    Lions, P.-L.: On Boltzmann and Landau equations. Philos. Trans. R. Soc. Lond., Ser. A, Math. Phys. Eng. Sci. 346, 191–204 (1994) CrossRefGoogle Scholar
  49. 49.
    Lions, P.-L., Masmoudi, N.: Une approche locale de la limite incompressible. (French) C. R. Acad. Sci., Paris, Sér. I, Math. 329, 387–392 (1999) CrossRefGoogle Scholar
  50. 50.
    Lions, P.-L., Masmoudi, N.: From Boltzmann Equations to Navier–Stokes Equations I. Arch. Ration. Mech. Anal. 158, 173–193 (2001) MathSciNetCrossRefGoogle Scholar
  51. 51.
    Lions, P.-L., Masmoudi, N.: From Boltzmann Equations to the Stokes and Euler Equations II. Arch. Ration. Mech. Anal. 158, 195–211 (2001) CrossRefGoogle Scholar
  52. 52.
    Masmoudi, N., Saint-Raymond, L.: From the Boltzmann equation to the Stokes-Fourier system in a bounded domain. To appear in Commun. Pure Appl. Math. Google Scholar
  53. 53.
    Perthame, B.: Global Existence to the BGK Model of the Boltzmann Equation. J. Differ. Equations 82, 191–205 (1989) MathSciNetCrossRefGoogle Scholar
  54. 54.
    Quastel, J., Yau, H.-T.: Lattice gases, large deviations, and the incompressible Navier–Stokes equations. Ann. Math. (2) 148, 51–108 (1998) MathSciNetCrossRefzbMATHGoogle Scholar
  55. 55.
    Saint-Raymond, L.: Discrete time Navier–Stokes limit for the BGK Boltzmann equation. Commun. Partial Differ. Equations 27, 149–184 (2002) CrossRefGoogle Scholar
  56. 56.
    Saint-Raymond, L.: From the Boltzmann BGK Equation to the Navier–Stokes System. Ann. Sci. Éc. Norm. Supér., IV. Sér. 36, 271–317 (2003) Google Scholar
  57. 57.
    Schochet, S.: Fast singular limits of hyperbolic PDEs. J. Differ. Equations 114, 476–512 (1994) CrossRefGoogle Scholar
  58. 58.
    Simon, J.: Compact sets in the space Lp(0,T;B). Ann. Mat. Pura Appl., IV. Ser. 146, 65–96 (1987) CrossRefGoogle Scholar
  59. 59.
    Sone, Y.: Asymptotic Theory of Flow of a Rarefied Gas over a Smooth Boundary II. In: Rarefied Gas Dynamics. Vol. II, pp. 737–749, ed. by D. Dini. Pisa: Editrice Tecnico Scientifica 1971 Google Scholar
  60. 60.
    Sone, Y.: Kinetic Theory and Fluid Mechanics. Boston: Birkhäuser 2002 Google Scholar
  61. 61.
    Toscani, G., Villani, C.: Sharp entropy dissipation bounds and explicit rate of trend to equilibrium for the spatially homogeneous Boltzmann equation. Commun. Math. Phys. 203, 667–706 (1999) MathSciNetCrossRefGoogle Scholar
  62. 62.
    Villani, C.: Limites hydrodynamiques de l’équation de Boltzmann [d’après C. Bardos, F. Golse, D. Levermore, Lions, P.-L., N. Masmoudi, L. Saint-Raymond]. Séminaire Bourbaki, vol. 2000–2001, Exp. 893Google Scholar

Copyright information

© Springer-Verlag 2003

Authors and Affiliations

  1. 1.Institut Universitaire de France, Département de Mathématiques et ApplicationsEcole Normale Supérieure ParisParisFrance
  2. 2.Laboratoire d’Analyse NumériqueUniversité Paris VIParisFrance

Personalised recommendations