Advertisement

Inventiones mathematicae

, Volume 154, Issue 1, pp 123–178 | Cite as

Proof of the Boltzmann-Sinai ergodic hypothesis for typical hard disk systems

  • Nándor Simányi
Article

Abstract

We consider the system of N (≥2) hard disks of masses m1,...,m N and radius r in the flat unit torus 𝕋2. We prove the ergodicity (actually, the B-mixing property) of such systems for almost every selection (m1,...,m N ;r) of the outer geometric parameters.

Keywords

Geometric Parameter Hard Disk Disk System Ergodic Hypothesis Unit Torus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bálint, P., Chernov, N., Szász, D., Tóth, I.P.: Multidimensional semidispersing billiards: singularities and the fundamental theorem. Ann. Inst. Henri Poincaré 3, 451–482 (2002) Google Scholar
  2. 2.
    Bunimovich, L., Liverani, C., Pellegrinotti, A., Sukhov, Yu.: Special Systems of Hard Balls that Are Ergodic. Commun. Math. Phys. 146, 357–396 (1992) MathSciNetzbMATHGoogle Scholar
  3. 3.
    Bunimovich, L.A., Sinai, Ya. G.: The fundamental theorem of the theory of scattering billiards. Math. USSR-Sb. 19, 407–423 (1973) Google Scholar
  4. 4.
    Burago, D., Ferleger, S., Kononenko, A.: A geometric approach to semidispersing billiards. Ergodic Theory Dyn. Syst. 18, 303–319 (1998) CrossRefMathSciNetzbMATHGoogle Scholar
  5. 5.
    Chernov, N.I.: Statistical Properties of the Periodic Lorentz Gas. Multidimensional Case. J. Stat. Phys. 74, 11–54 (1994) zbMATHGoogle Scholar
  6. 6.
    Chernov, N.I., Haskell, C.: Non-uniformly hyperbolic K-systems are Bernoulli. Ergodic Theory Dyn. Syst. 16, 19–44 (1996) MathSciNetzbMATHGoogle Scholar
  7. 7.
    Engelking, R.: General Topology. Warsaw: PWN Polish Scientific Publishers 1978 Google Scholar
  8. 8.
    Engelking, R.: Dimension Theory. North-Holland (1978) Google Scholar
  9. 9.
    Galperin, G.: On systems of locally interacting and repelling particles moving in space. Tr. Mosk. Mat. O.-va. 43, 142–196 (1981) zbMATHGoogle Scholar
  10. 10.
    Katok, A., Burns, K.: Infinitesimal Lyapunov functions, invariant cone families and stochastic properties of smooth dynamical systems. Ergodic Theory Dyn. Syst. 14, 757–785 (1994) MathSciNetzbMATHGoogle Scholar
  11. 11.
    Katok, A., Strelcyn, J.-M.: Invariant Manifolds, Entropy and Billiards; Smooth Maps with Singularities. Lect. Notes Math. 1222. Springer 1986 Google Scholar
  12. 12.
    Kornfeld, I.P., Sinai, Ya.G., Fomin, S.V.: Ergodic Theory. Moscow: Nauka 1980 Google Scholar
  13. 13.
    Krámli, A., Simányi, N., Szász, D.: Ergodic Properties of Semi–Dispersing Billiards I. Two Cylindric Scatterers in the 3–D Torus. Nonlinearity. 2, 311–326 (1989) Google Scholar
  14. 14.
    Krámli, A., Simányi, N., Szász, D.: A “Transversal” Fundamental Theorem for Semi-Dispersing Billiards. Commun. Math. Phys. 129, 535–560 (1990) Google Scholar
  15. 15.
    Krámli, A., Simányi, N., Szász, D.: The K–Property of Three Billiard Balls. Ann. Math. 133, 37–72 (1991) Google Scholar
  16. 16.
    Krámli, A., Simányi, N., Szász, D.: The K–Property of Four Billiard Balls. Commun. Math. Phys. 144, 107–148 (1992) Google Scholar
  17. 17.
    Krylov, N.S.: The Processes of Relaxation of Statistical Systems and the Criterion of Mechanical Instability. Thesis, Moscow; Republished in English by Princeton University Press, Princeton N.J. 1979 Google Scholar
  18. 18.
    Liverani, C., Wojtkowski, M.: Ergodicity in Hamiltonian systems. Dyn. Rep. 4, 130–202 (1995) zbMATHGoogle Scholar
  19. 19.
    Ornstein, D., Weiss, B.: On the Bernoulli Nature of Systems with Some Hyperbolic Structure. Ergodic Theory Dyn. Syst. 18, 441–456 (1998) CrossRefMathSciNetzbMATHGoogle Scholar
  20. 20.
    Pesin, Ya.: Characteristic Exponents and Smooth Ergodic Theory. Russ. Math. Surv. 32, 55–114 (1977) zbMATHGoogle Scholar
  21. 21.
    Rudolph, D.J.: Classifying the isometric extensions of a Bernoulli shift. J. Anal. Math. 34, 36–50 (1978) MathSciNetzbMATHGoogle Scholar
  22. 22.
    Simányi, N.: The K-property of N billiard balls I. Invent. Math. 108, 521–548 (1992) Google Scholar
  23. 23.
    Simányi, N.: The K-property of N billiard balls II. Computation of neutral linear spaces. Invent. Math. 110, 151–172 (1992) Google Scholar
  24. 24.
    Simányi, N.: The Complete Hyperbolicity of Cylindric Billiards. Ergodic Theory Dyn. Syst. 22, 281–302 (2002) Google Scholar
  25. 25.
    Simányi, N., Szász, D.: The K-property of 4-D Billiards with Non-Orthogonal Cylindric Scatterers. J. Stat. Phys. 76, 587–604 (1994) Google Scholar
  26. 26.
    Simányi, N., Szász, D.: The K-property of Hamiltonian systems with restricted hard ball interactions. Math. Res. Lett. 2, 751–770 (1995) Google Scholar
  27. 27.
    Simányi, N., Szász, D.: Hard Ball Systems Are Completely Hyperbolic. Ann. Math. 149, 35–96 (1999) Google Scholar
  28. 28.
    Simányi, N., Szász, D.: Non-integrability of Cylindric Billiards and Transitive Lie Group Actions. Ergodic Theory Dyn. Syst. 20, 593–610 (2000) CrossRefGoogle Scholar
  29. 29.
    Simányi, N., Wojtkowski, M.P.: Two-particle billiard system with arbitrary mass ratio. Ergodic Theory Dyn. Syst. 9, 165–171 (1989) Google Scholar
  30. 30.
    Sinai, Ya.G.: On the Foundation of the Ergodic Hypothesis for a Dynamical System of Statistical Mechanics. Soviet Math. Dokl. 4, 1818–1822 (1963) Google Scholar
  31. 31.
    Sinai, Ya.G.: Dynamical systems with countably multiple Lebesgue spectrum II. Am. Math. Soc. Transl. 68, 34–38 (1968) Google Scholar
  32. 32.
    Sinai, Ya.G.: Dynamical Systems with Elastic Reflections. Russ. Math. Surv. 25, 137–189 (1970) zbMATHGoogle Scholar
  33. 33.
    Sinai, Ya.G.: Development of Krylov’s ideas. Afterword to N.S. Krylov’s “Works on the foundations of statistical physics”, see reference [K1979]. Princeton, N.J.: Princeton University Press 1979 Google Scholar
  34. 34.
    Sinai,Ya.G., Chernov, N.I.: Entropy of a gas of hard spheres with respect to the group of space-time shifts. Tr. Semin. Im. I. G. Petrovskogo 8, 218–238 (1982) Google Scholar
  35. 35.
    Sinai, Ya.G., Chernov, N.I.: Ergodic properties of certain systems of 2–D discs and 3–D balls. Russ. Math. Surv. 42, 181–207 (1987) Google Scholar
  36. 36.
    Szász, D.: Ergodicity of classical billiard balls, Physica A 194, 86–92 (1993) Google Scholar
  37. 37.
    Szász, D.: The K-property of ‘Orthogonal’ Cylindric Billiards. Commun. Math. Phys. 160, 581–597 (1994) Google Scholar
  38. 38.
    Szász, D.: Boltzmann’s Ergodic Hypothesis, a Conjecture for Centuries? Stud. Sci. Math. Hung. 31, 299–322 (1996) Google Scholar
  39. 39.
    Vaserstein, L.N.: On Systems of Particles with Finite Range and/or Repulsive Interactions. Commun. Math. Phys. 69, 31–56 (1979) Google Scholar
  40. 40.
    Wojtkowski, M.: Measure theoretic entropy of the system of hard spheres. Ergodic Theory Dyn. Syst. 8, 133–153 (1988) MathSciNetzbMATHGoogle Scholar
  41. 41.
    Wojtkowski, M.: Linearly stable orbits in 3-dimensional billiards. Commun. Math. Phys. 129, 319–327 (1990)MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer-Verlag 2003

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of Alabama at BirminghamBirminghamUSA

Personalised recommendations