Inventiones mathematicae

, Volume 154, Issue 1, pp 63–121

Cluster algebras II: Finite type classification

Article
  • 577 Downloads

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Adler, I.: Abstract polytopes, Ph.D. thesis, Department of Operations Research, Stanford University, 1971 Google Scholar
  2. 2.
    Aschbacher, M.: Finite groups acting on homology manifolds. Pac. J. Math. 181, Special Issue, 3–36 (1997) Google Scholar
  3. 3.
    Barvinok, A.: A course in convexity. Am. Math. Soc. 2002 Google Scholar
  4. 4.
    Bolker, E., Guillemin, V., Holm, T.: How is a graph like a manifold? math.CO/0206103 Google Scholar
  5. 5.
    Bott, R., Taubes, C.: On the self-linking of knots. Topology and physics. J. Math. Phys. 35, 5247–5287 (1994) Google Scholar
  6. 6.
    Bourbaki, N.: Groupes et algèbres de Lie. Ch. IV–VI. Paris: Hermann 1968 Google Scholar
  7. 7.
    Chapoton, F., Fomin, S., Zelevinsky, A.: Polytopal realizations of generalized associahedra, Can. Math. Bull. 45, 537–566 (2002) MATHGoogle Scholar
  8. 8.
    Fomin, S., Zelevinsky, A.: Double Bruhat cells and total positivity. J. Am. Math. Soc. 12, 335–380 (1999) Google Scholar
  9. 9.
    Fomin, S., Zelevinsky, A.: Cluster algebras I: Foundations. J. Am. Math. Soc. 15, 497–529 (2002) Google Scholar
  10. 10.
    Fomin, S., Zelevinsky, A.: The Laurent phenomenon. Adv. Appl. Math. 28, 119–144 (2002) CrossRefMathSciNetMATHGoogle Scholar
  11. 11.
    Fomin, S., Zelevinsky, A.: Y-systems and generalized associahedra. To appear in Ann. Math. (2) Google Scholar
  12. 12.
    Gekhtman, M., Shapiro, M., Vainshtein, A.: Cluster algebras and Poisson geometry. math.QA/0208033 Google Scholar
  13. 13.
    Gelfand, I., Kapranov, M., Zelevinsky, A.: Discriminants, Resultants and Multidimensional Determinants, 523 pp. Boston: Birkhäuser 1994 Google Scholar
  14. 14.
    Guillemin, V., Zara, C.: Equivariant de Rham theory and graphs. Asian J. Math. 3, 49–76 (1999) Google Scholar
  15. 15.
    Kac, V.: Infinite dimensional Lie algebras, 3rd edition. Cambridge: Cambridge University Press 1990 Google Scholar
  16. 16.
    Kung, J., Rota, G.-C.: The invariant theory of binary forms. Bull. Am. Math. Soc., New. Ser. 10, 27–85 (1984) Google Scholar
  17. 17.
    Lee, C.W.: The associahedron and triangulations of the n-gon. Eur. J. Comb. 10, 551–560 (1989) MathSciNetMATHGoogle Scholar
  18. 18.
    Lusztig, G.: Total positivity in reductive groups. In: Lie theory and geometry: in honor of Bertram Kostant. Progress in Mathematics 123. Birkhäuser 1994 Google Scholar
  19. 19.
    Lusztig, G.: Introduction to total positivity. In: Positivity in Lie theory: open problems. de Gruyter Exp. Math. 26, 133–145. Berlin: de Gruyter 1998 Google Scholar
  20. 20.
    Markl, M.: Simplex, associahedron, and cyclohedron. Contemp. Math. 227, 235–265 (1999) MATHGoogle Scholar
  21. 21.
    Marsh, R., Reineke, M., Zelevinsky, A.: Generalized associahedra via quiver representations. To appear in Trans. Am. Math. Soc. Google Scholar
  22. 22.
    Massey, W.S.: Algebraic topology: an introduction. Springer-Verlag 1977 Google Scholar
  23. 23.
    McMullen, P., Schulte, E.: Abstract Regular Polytopes. Cambridge: Cambridge University Press 2003 Google Scholar
  24. 24.
    Simion, R.: A type-B associahedron. Adv. Appl. Math. 30, 2–25 (2003) CrossRefGoogle Scholar
  25. 25.
    Stasheff, J.D.: Homotopy associativity of H-spaces. I, II. Trans. Am. Math. Soc. 108, 275–292, 293–312 (1963) Google Scholar
  26. 26.
    Sturmfels, B.: Algorithms in invariant theory. Springer-Verlag 1993 Google Scholar
  27. 27.
    Zelevinsky, A.: From Littlewood-Richardson coefficients to cluster algebras in three lectures. In: Symmetric Functions 2001: Surveys of Developments and Perspectives, S. Fomin (Ed.), NATO Science Series II, vol. 74. Kluwer Academic Publishers 2002Google Scholar

Copyright information

© Springer-Verlag 2003

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of MichiganAnn ArborUSA
  2. 2.Department of MathematicsNortheastern UniversityBostonUSA

Personalised recommendations