Inventiones mathematicae

, Volume 154, Issue 1, pp 63–121 | Cite as

Cluster algebras II: Finite type classification

  • Sergey FominEmail author
  • Andrei ZelevinskyEmail author


Finite Type Type Classification Cluster Algebra 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Adler, I.: Abstract polytopes, Ph.D. thesis, Department of Operations Research, Stanford University, 1971 Google Scholar
  2. 2.
    Aschbacher, M.: Finite groups acting on homology manifolds. Pac. J. Math. 181, Special Issue, 3–36 (1997) Google Scholar
  3. 3.
    Barvinok, A.: A course in convexity. Am. Math. Soc. 2002 Google Scholar
  4. 4.
    Bolker, E., Guillemin, V., Holm, T.: How is a graph like a manifold? math.CO/0206103 Google Scholar
  5. 5.
    Bott, R., Taubes, C.: On the self-linking of knots. Topology and physics. J. Math. Phys. 35, 5247–5287 (1994) Google Scholar
  6. 6.
    Bourbaki, N.: Groupes et algèbres de Lie. Ch. IV–VI. Paris: Hermann 1968 Google Scholar
  7. 7.
    Chapoton, F., Fomin, S., Zelevinsky, A.: Polytopal realizations of generalized associahedra, Can. Math. Bull. 45, 537–566 (2002) zbMATHGoogle Scholar
  8. 8.
    Fomin, S., Zelevinsky, A.: Double Bruhat cells and total positivity. J. Am. Math. Soc. 12, 335–380 (1999) Google Scholar
  9. 9.
    Fomin, S., Zelevinsky, A.: Cluster algebras I: Foundations. J. Am. Math. Soc. 15, 497–529 (2002) Google Scholar
  10. 10.
    Fomin, S., Zelevinsky, A.: The Laurent phenomenon. Adv. Appl. Math. 28, 119–144 (2002) CrossRefMathSciNetzbMATHGoogle Scholar
  11. 11.
    Fomin, S., Zelevinsky, A.: Y-systems and generalized associahedra. To appear in Ann. Math. (2) Google Scholar
  12. 12.
    Gekhtman, M., Shapiro, M., Vainshtein, A.: Cluster algebras and Poisson geometry. math.QA/0208033 Google Scholar
  13. 13.
    Gelfand, I., Kapranov, M., Zelevinsky, A.: Discriminants, Resultants and Multidimensional Determinants, 523 pp. Boston: Birkhäuser 1994 Google Scholar
  14. 14.
    Guillemin, V., Zara, C.: Equivariant de Rham theory and graphs. Asian J. Math. 3, 49–76 (1999) Google Scholar
  15. 15.
    Kac, V.: Infinite dimensional Lie algebras, 3rd edition. Cambridge: Cambridge University Press 1990 Google Scholar
  16. 16.
    Kung, J., Rota, G.-C.: The invariant theory of binary forms. Bull. Am. Math. Soc., New. Ser. 10, 27–85 (1984) Google Scholar
  17. 17.
    Lee, C.W.: The associahedron and triangulations of the n-gon. Eur. J. Comb. 10, 551–560 (1989) MathSciNetzbMATHGoogle Scholar
  18. 18.
    Lusztig, G.: Total positivity in reductive groups. In: Lie theory and geometry: in honor of Bertram Kostant. Progress in Mathematics 123. Birkhäuser 1994 Google Scholar
  19. 19.
    Lusztig, G.: Introduction to total positivity. In: Positivity in Lie theory: open problems. de Gruyter Exp. Math. 26, 133–145. Berlin: de Gruyter 1998 Google Scholar
  20. 20.
    Markl, M.: Simplex, associahedron, and cyclohedron. Contemp. Math. 227, 235–265 (1999) zbMATHGoogle Scholar
  21. 21.
    Marsh, R., Reineke, M., Zelevinsky, A.: Generalized associahedra via quiver representations. To appear in Trans. Am. Math. Soc. Google Scholar
  22. 22.
    Massey, W.S.: Algebraic topology: an introduction. Springer-Verlag 1977 Google Scholar
  23. 23.
    McMullen, P., Schulte, E.: Abstract Regular Polytopes. Cambridge: Cambridge University Press 2003 Google Scholar
  24. 24.
    Simion, R.: A type-B associahedron. Adv. Appl. Math. 30, 2–25 (2003) CrossRefGoogle Scholar
  25. 25.
    Stasheff, J.D.: Homotopy associativity of H-spaces. I, II. Trans. Am. Math. Soc. 108, 275–292, 293–312 (1963) Google Scholar
  26. 26.
    Sturmfels, B.: Algorithms in invariant theory. Springer-Verlag 1993 Google Scholar
  27. 27.
    Zelevinsky, A.: From Littlewood-Richardson coefficients to cluster algebras in three lectures. In: Symmetric Functions 2001: Surveys of Developments and Perspectives, S. Fomin (Ed.), NATO Science Series II, vol. 74. Kluwer Academic Publishers 2002Google Scholar

Copyright information

© Springer-Verlag 2003

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of MichiganAnn ArborUSA
  2. 2.Department of MathematicsNortheastern UniversityBostonUSA

Personalised recommendations