Inventiones mathematicae

, Volume 153, Issue 3, pp 519–535 | Cite as

Jet schemes, log discrepancies and inversion of adjunction

Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ambro, F.: Inversion of adjunction for non-degenerate hypersurfaces. arXiv: math.AG/0108168 Google Scholar
  2. 2.
    Ambro, F.: On minimal log discrepancies. Math. Res. Lett. 6, 573–580 (1999) MathSciNetMATHGoogle Scholar
  3. 3.
    Ambro, F.: The adjunction conjecture and its applications. math.AG/9903060 Google Scholar
  4. 4.
    Craw, A.: An introduction to motivic integration. Proceedings of the Clay Mathematics Institute School on Geometry and String Theory (2002). To appear Google Scholar
  5. 5.
    Denef, J., Loeser, F.: Germs of arcs on singular varieties and motivic integration. Invent. Math. 135, 201–232 (1999) CrossRefMathSciNetMATHGoogle Scholar
  6. 6.
    Denef, J., Loeser, F.: Motivic Igusa zeta function. J. Algebr. Geom. 7, 505–537 (1998) MathSciNetMATHGoogle Scholar
  7. 7.
    Ein, L., Lazarsfeld, R., Mustaţǎ, M.: Contact loci in arc spaces. In preparation Google Scholar
  8. 8.
    Greenberg, M.: Rational points in henselian discrete valuation rings. Publ. Math., Inst. Hautes Étud. Sci. 31, 59–64 (1966) Google Scholar
  9. 9.
    Hironaka, H.: Resolution of singularities of an algebraic variety over a field of characteristic zero. Ann. Math. (2) 79, 109–326 (1964) Google Scholar
  10. 10.
    Kollár, J.: Singularities of pairs. Proc. Symp. Pure Math. 62, 221–286 (1997) Google Scholar
  11. 11.
    Kollár, J. (with 14 coauthors): Flips and abundance for algebraic threefolds. Astérisque 211 (1992) Google Scholar
  12. 12.
    Looijenga, E.: Motivic measures. Séminaire Bourbaki, Vol. 1999/2000; Astérisque 276, 267–297 (2002) Google Scholar
  13. 13.
    Mustaţǎ, M.: Singularities of pairs via jet schemes. J. Am. Math. Soc. 15, 599–615 (2002) Google Scholar
  14. 14.
    Mustaţǎ, M.: Jet schemes of locally complete intersection canonical singularities, with an appendix by D. Eisenbud and E. Frenkel. Invent. Math. 145, 397–424 (2001) Google Scholar
  15. 15.
    Shokurov, V.: 3-Fold log flips. Izv. Math. 40, 95–202 (1993) MathSciNetMATHGoogle Scholar
  16. 16.
    Shokurov, V.: Problems about Fano varieties. In: Birational geometry of algebraic varieties, Open Problems–Katata 1988, pp. 30–32 Google Scholar
  17. 17.
    Stevens, J.: On canonical singularities as total spaces of deformations. Abh. Math. Sem. Univ. Hamb. 58, 275–278 (1988) MathSciNetMATHGoogle Scholar
  18. 18.
    Yasuda, T.: Dimensions of jet schemes of log singularities. Am. J. Math. To appearGoogle Scholar

Copyright information

© Springer-Verlag 2003

Authors and Affiliations

  1. 1.Department of Mathematics, Statistics and Computer ScienceUniversity of Illinois at ChicagoChicagoUSA
  2. 2.Department of MathematicsHarvard UniversityCambridgeUSA
  3. 3.Department of Mathematical SciencesUniversity of TokyoTokyoJapan

Personalised recommendations