Inventiones mathematicae

, Volume 153, Issue 3, pp 487–502

Arithmetic properties of the partition function

Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ahlgren, S.: The partition function modulo composite integers M. Math. Ann. 318, 795–803 (2000) CrossRefMathSciNetMATHGoogle Scholar
  2. 2.
    Ahlgren, S., Ono, K.: Congruence properties for the partition function. Proc. Natl. Acad. Sci. USA 98, 12882–12884 (2001) CrossRefMathSciNetMATHGoogle Scholar
  3. 3.
    Andrews, G.E.: The theory of partitions. Cambridge: Cambridge University Press 1998 Google Scholar
  4. 4.
    Andrews, G.E., Garvan, F.: Dyson’s crank of a partition. Bull. Am. Math. Soc., New Ser. 18, 167–171 (1988) Google Scholar
  5. 5.
    Atkin, A.O.L.: Proof of a conjecture of Ramanujan. Glasg. Math. J. 8, 14–32 (1967) Google Scholar
  6. 6.
    Atkin, A.O.L.: Multiplicative congruence properties and density problems for p(n). Proc. Lond. Math. Soc., III. Ser. 18, 563–576 (1968) Google Scholar
  7. 7.
    Atkin, A.O.L., Lehner, J.: Hecke operators on Γ0(N). Math. Ann. 185, 134–160 (1970) MATHGoogle Scholar
  8. 8.
    Atkin, A.O.L., O’Brien, J.N.: Some properties of p(n) and c(n) modulo powers of 13. Trans. Am. Math. Soc. 126, 442–459 (1967) MATHGoogle Scholar
  9. 9.
    Atkin, A.O.L., Swinnerton-Dyer, H.P.F.: Some properties of partitions. Proc. Lond. Math. Soc., III. Ser. 4, 84–106 (1954) Google Scholar
  10. 10.
    Berndt, B.C., Ono, K.: Ramanujan’s unpublished manuscript on the partition and tau functions with commentary. Sémin. Lothar. Comb. 42, Art. B42 (1999) Google Scholar
  11. 11.
    Bruinier, J.H., Ono, K.: Coefficients of half-integral weight modular forms. J. Number Theory 99, 164–179 (2003) CrossRefGoogle Scholar
  12. 12.
    Chan, H.H.: Private communication. Google Scholar
  13. 13.
    Dyson, F.J., Some guesses in the theory of partitions. Eureka (Cambridge) 8, 10–15 (1944) Google Scholar
  14. 14.
    Garvan, F., Kim, D., Stanton, D.: Cranks and t-cores. Invent. Math. 101, 1–17 (1990) MathSciNetMATHGoogle Scholar
  15. 15.
    Gordon, B., Hughes, K.: Multiplicative properties of eta-products, II. Contemp. Math. 143, 415–430 (1993) MATHGoogle Scholar
  16. 16.
    Kløve, T.: Recurrence formulae for the coefficients of modular forms and congruences for the partition function and for the coefficients of j(τ), (j(τ)-1728)1/2, and j(τ)1/3. Math. Scand. 23, 133–159 (1969) Google Scholar
  17. 17.
    Kiming, I., Olsson, J.: Congruences like Ramanujan’s for powers of the partition function. Arch. Math. 59, 348–360 (1992) MathSciNetMATHGoogle Scholar
  18. 18.
    Kolberg, O.: Note on the parity of the partition function. Math. Scand. 7, 377–378 (1959) MATHGoogle Scholar
  19. 19.
    Newman, M.: Periodicity modulo m and divisibility properties of the partition function. Trans. Am. Math. Soc. 97, 225–236 (1960) MATHGoogle Scholar
  20. 20.
    Newman, M.: Construction and application of a certain class of modular functions. Proc. Lond. Math. Soc., III. Ser. 7, 334–350 (1957) Google Scholar
  21. 21.
    Ono, K.: Distribution of the partition function modulo m. Ann. Math. 151, 293–307 (2000) Google Scholar
  22. 22.
    Ramanujan, S.: On certain arithmetical functions. Trans. Cambridge Philos. Soc. 22, 159–184 (1916) Google Scholar
  23. 23.
    Ramanujan, S.: Some properties of p(n), the number of partitions of n. Proc. Cambridge Philos. Soc. 19, 207–210 (1919) MATHGoogle Scholar
  24. 24.
    Ramanujan, S.: Congruence properties of partitions. Proc. Lond. Math. Soc., III. Ser. 18, xix (1920) Google Scholar
  25. 25.
    Ramanujan, S.: Congruence properties of partitions. Math. Z. 9, 147–153 (1921) MATHGoogle Scholar
  26. 26.
    Serre, J.-P.: Formes modulaires et fonctions zêta p-adiques. Lect. Notes Math. 350, 191–268 (1973) MATHGoogle Scholar
  27. 27.
    Swinnerton-Dyer, H.P.F.: On ℓ-adic representations and congruences for coefficients of modular forms. Lect. Notes Math. 350, 1–55 (1973)MATHGoogle Scholar

Copyright information

© Springer-Verlag 2003

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of IllinoisUrbanaUSA

Personalised recommendations