Inventiones mathematicae

, Volume 153, Issue 3, pp 487–502 | Cite as

Arithmetic properties of the partition function

Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ahlgren, S.: The partition function modulo composite integers M. Math. Ann. 318, 795–803 (2000) CrossRefMathSciNetMATHGoogle Scholar
  2. 2.
    Ahlgren, S., Ono, K.: Congruence properties for the partition function. Proc. Natl. Acad. Sci. USA 98, 12882–12884 (2001) CrossRefMathSciNetMATHGoogle Scholar
  3. 3.
    Andrews, G.E.: The theory of partitions. Cambridge: Cambridge University Press 1998 Google Scholar
  4. 4.
    Andrews, G.E., Garvan, F.: Dyson’s crank of a partition. Bull. Am. Math. Soc., New Ser. 18, 167–171 (1988) Google Scholar
  5. 5.
    Atkin, A.O.L.: Proof of a conjecture of Ramanujan. Glasg. Math. J. 8, 14–32 (1967) Google Scholar
  6. 6.
    Atkin, A.O.L.: Multiplicative congruence properties and density problems for p(n). Proc. Lond. Math. Soc., III. Ser. 18, 563–576 (1968) Google Scholar
  7. 7.
    Atkin, A.O.L., Lehner, J.: Hecke operators on Γ0(N). Math. Ann. 185, 134–160 (1970) MATHGoogle Scholar
  8. 8.
    Atkin, A.O.L., O’Brien, J.N.: Some properties of p(n) and c(n) modulo powers of 13. Trans. Am. Math. Soc. 126, 442–459 (1967) MATHGoogle Scholar
  9. 9.
    Atkin, A.O.L., Swinnerton-Dyer, H.P.F.: Some properties of partitions. Proc. Lond. Math. Soc., III. Ser. 4, 84–106 (1954) Google Scholar
  10. 10.
    Berndt, B.C., Ono, K.: Ramanujan’s unpublished manuscript on the partition and tau functions with commentary. Sémin. Lothar. Comb. 42, Art. B42 (1999) Google Scholar
  11. 11.
    Bruinier, J.H., Ono, K.: Coefficients of half-integral weight modular forms. J. Number Theory 99, 164–179 (2003) CrossRefGoogle Scholar
  12. 12.
    Chan, H.H.: Private communication. Google Scholar
  13. 13.
    Dyson, F.J., Some guesses in the theory of partitions. Eureka (Cambridge) 8, 10–15 (1944) Google Scholar
  14. 14.
    Garvan, F., Kim, D., Stanton, D.: Cranks and t-cores. Invent. Math. 101, 1–17 (1990) MathSciNetMATHGoogle Scholar
  15. 15.
    Gordon, B., Hughes, K.: Multiplicative properties of eta-products, II. Contemp. Math. 143, 415–430 (1993) MATHGoogle Scholar
  16. 16.
    Kløve, T.: Recurrence formulae for the coefficients of modular forms and congruences for the partition function and for the coefficients of j(τ), (j(τ)-1728)1/2, and j(τ)1/3. Math. Scand. 23, 133–159 (1969) Google Scholar
  17. 17.
    Kiming, I., Olsson, J.: Congruences like Ramanujan’s for powers of the partition function. Arch. Math. 59, 348–360 (1992) MathSciNetMATHGoogle Scholar
  18. 18.
    Kolberg, O.: Note on the parity of the partition function. Math. Scand. 7, 377–378 (1959) MATHGoogle Scholar
  19. 19.
    Newman, M.: Periodicity modulo m and divisibility properties of the partition function. Trans. Am. Math. Soc. 97, 225–236 (1960) MATHGoogle Scholar
  20. 20.
    Newman, M.: Construction and application of a certain class of modular functions. Proc. Lond. Math. Soc., III. Ser. 7, 334–350 (1957) Google Scholar
  21. 21.
    Ono, K.: Distribution of the partition function modulo m. Ann. Math. 151, 293–307 (2000) Google Scholar
  22. 22.
    Ramanujan, S.: On certain arithmetical functions. Trans. Cambridge Philos. Soc. 22, 159–184 (1916) Google Scholar
  23. 23.
    Ramanujan, S.: Some properties of p(n), the number of partitions of n. Proc. Cambridge Philos. Soc. 19, 207–210 (1919) MATHGoogle Scholar
  24. 24.
    Ramanujan, S.: Congruence properties of partitions. Proc. Lond. Math. Soc., III. Ser. 18, xix (1920) Google Scholar
  25. 25.
    Ramanujan, S.: Congruence properties of partitions. Math. Z. 9, 147–153 (1921) MATHGoogle Scholar
  26. 26.
    Serre, J.-P.: Formes modulaires et fonctions zêta p-adiques. Lect. Notes Math. 350, 191–268 (1973) MATHGoogle Scholar
  27. 27.
    Swinnerton-Dyer, H.P.F.: On ℓ-adic representations and congruences for coefficients of modular forms. Lect. Notes Math. 350, 1–55 (1973)MATHGoogle Scholar

Copyright information

© Springer-Verlag 2003

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of IllinoisUrbanaUSA

Personalised recommendations