Advertisement

Inventiones mathematicae

, Volume 153, Issue 1, pp 197–229 | Cite as

Mirror symmetry, Langlands duality, and the Hitchin system

  • Tamás Hausel
  • Michael Thaddeus
Article

Abstract

Among the major mathematical approaches to mirror symmetry are those of Batyrev-Borisov and Strominger-Yau-Zaslow (SYZ). The first is explicit and amenable to computation but is not clearly related to the physical motivation; the second is the opposite. Furthermore, it is far from obvious that mirror partners in one sense will also be mirror partners in the other. This paper concerns a class of examples that can be shown to satisfy the requirements of SYZ, but whose Hodge numbers are also equal. This provides significant evidence in support of SYZ. Moreover, the examples are of great interest in their own right: they are spaces of flat SL r -connections on a smooth curve. The mirror is the corresponding space for the Langlands dual group PGL r . These examples therefore throw a bridge from mirror symmetry to the duality theory of Lie groups and, more broadly, to the geometric Langlands program.

Keywords

Mirror Symmetry Smooth Curve Duality Theory Significant Evidence Mathematical Approach 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Arapura, D.: Hodge theory with local coefficients and fundamental groups of varieties. Bull. Am. Math. Soc., New Ser. 20, 169–172 (1989) Google Scholar
  2. 2.
    Arbarello, E., Cornalba, M., Griffiths, P., Harris, J.: Geometry of algebraic curves, Vol. I. Grundlehren Math. Wiss. 267. Springer 1985 Google Scholar
  3. 3.
    Atiyah, M.F., Bott, R.: The Yang-Mills equations over Riemann surfaces. Philos. Trans. R. Soc. Lond., Ser. A, Math. Phys. Eng. Sci. 308, 523–615 (1982) Google Scholar
  4. 4.
    Batyrev, V.V.: Dual polyhedra and mirror symmetry for Calabi-Yau hypersurfaces in toric varieties. J. Algebr. Geom. 3, 493–535 (1994) MathSciNetzbMATHGoogle Scholar
  5. 5.
    Batyrev, V.V., Borisov, L.A.: Mirror duality and string-theoretic Hodge numbers. Invent. Math. 126, 183–203 (1996) CrossRefMathSciNetzbMATHGoogle Scholar
  6. 6.
    Batyrev, V.V., Dais, D.: Strong McKay correspondence, string-theoretic Hodge numbers and mirror symmetry. Topology 35, 901–929 (1996) CrossRefMathSciNetzbMATHGoogle Scholar
  7. 7.
    Bershadsky, M., Johansen, A., Sadov, V., Vafa, C.: Topological reduction of 4D SYM to 2D σ-models. Nucl. Phys. B 448, 166–186 (1995) CrossRefMathSciNetzbMATHGoogle Scholar
  8. 8.
    Białynicki-Birula, A.: Some theorems on actions of algebraic groups. Ann. Math. 98, 480–497 (1973) Google Scholar
  9. 9.
    Brylinski, J.-L.: Loop spaces, characteristic classes and geometric quantization. Progr. Math. 107. Boston: Birkhäuser 1993 Google Scholar
  10. 10.
    Cox, D.A., Katz, S.: Mirror symmetry and algebraic geometry. Am. Math. Soc. 1999 Google Scholar
  11. 11.
    Craw, A.: An introduction to motivic integration. Preprint math.AG/9911179 Google Scholar
  12. 12.
    Deligne, P.: Théorie de Hodge II. Publ. Math., Inst. Hautes Étud. Sci. 40, 5–57 (1971) Google Scholar
  13. 13.
    Deligne, P.: Théorie de Hodge III. Publ. Math., Inst. Hautes Étud. Sci. 44, 5–77 (1974) Google Scholar
  14. 14.
    Donagi, R., Gaitsgory, D.: The gerbe of Higgs bundles. Transform. Groups 7, 109–153 (2002) MathSciNetzbMATHGoogle Scholar
  15. 15.
    Ginzburg, V.: The global nilpotent variety is Lagrangian. Duke Math. J. 109, 511–519 (2001) CrossRefMathSciNetzbMATHGoogle Scholar
  16. 16.
    Giraud, J.: Cohomologie non abélienne. Grundlehren Math. Wiss. 179. Springer 1971 Google Scholar
  17. 17.
    Gothen, P.B.: The Betti numbers of the moduli space of stable rank 3 Higgs bundles on a Riemann surface. Int. J. Math. 5, 861–875 (1994) MathSciNetzbMATHGoogle Scholar
  18. 18.
    Griffiths, P., Harris, J.: Principles of algebraic geometry. Wiley 1978 Google Scholar
  19. 19.
    Harder, G., Narasimhan, M.S.: On the cohomology groups of moduli spaces of vector bundles on curves. Math. Ann. 212, 215–248 (1974/75) Google Scholar
  20. 20.
    Hausel, T.: Compactification of moduli of Higgs bundles. J. Reine Angew. Math. 503, 169–192 (1998) MathSciNetzbMATHGoogle Scholar
  21. 21.
    Hausel, T., Thaddeus, M.: Generators for the cohomology of the moduli space of rank 2 Higgs bundles. Preprint math.AG/0003093 Google Scholar
  22. 22.
    Hausel, T., Thaddeus, M.: Examples of mirror partners arising from integrable systems. C. R. Acad. Sci., Paris Sér. I Math. 333, 313–318 (2001) Google Scholar
  23. 23.
    Hitchin, N.J.: Stable bundles and integrable systems. Duke Math. J. 54, 91–114 (1987) zbMATHGoogle Scholar
  24. 24.
    Hitchin, N.J.: The self-duality equations on a Riemann surface. Proc. Lond. Math. Soc. (3) 55, 59–126 (1987) Google Scholar
  25. 25.
    Hitchin, N.J.: The moduli space of special Lagrangian submanifolds. Ann. Sc. Norm. Super. Pisa, Cl. Sci., IV Ser. 25, 503–515 (1997–8) Google Scholar
  26. 26.
    Hitchin, N.J.: Lectures on special Lagrangian submanifolds. Winter School on Mirror Symmetry, Vector Bundles and Lagrangian Submanifolds (Cambridge, MA, 1999). pp. 151–182. Am. Math. Soc. 2001 Google Scholar
  27. 27.
    Karpilovsky, G.: The Schur multiplier. Oxford Univ. Press 1987 Google Scholar
  28. 28.
    Mumford, D.: Abelian varieties. Oxford Univ. Press 1970 Google Scholar
  29. 29.
    Mumford, D., Fogarty, J., Kirwan, F.: Geometric invariant theory, third enlarged edition. Ergeb. Math. Grenzgeb. 34. Springer 1994 Google Scholar
  30. 30.
    Narasimhan, M.S., Ramanan, S.: Generalised Prym varieties as fixed points. J. Indian Math. Soc., New Ser. 39, 1–19 (1975) Google Scholar
  31. 31.
    Newstead, P.E.: Characteristic classes of stable bundles over an algebraic curve. Trans. Am. Math. Soc. 169, 337–345 (1972) zbMATHGoogle Scholar
  32. 32.
    Nitsure, N.: Moduli space of semistable pairs on a curve. Proc. Lond. Math. Soc. (3) 62, 275–300 (1991) Google Scholar
  33. 33.
    Ruan, Y.: Discrete torsion and twisted orbifold cohomology. Preprint math.AG/0005299 Google Scholar
  34. 34.
    Serre, J.-P.: Algebraic groups and class fields. Grad. Texts Math. 117. Springer 1988 Google Scholar
  35. 35.
    Simpson, C.T.: Moduli of representations of the fundamental group of a smooth projective variety, I. Publ. Math., Inst. Hautes Étud. Sci. 79, 47–129 (1994) Google Scholar
  36. 36.
    Simpson, C.T.: Moduli of representations of the fundamental group of a smooth projective variety, II. Publ. Math., Inst. Hautes Étud. Sci. 80, 5–79 (1995) Google Scholar
  37. 37.
    Simpson, C.T.: The Hodge filtration on nonabelian cohomology. In: J. Kollár, R. Lazarsfeld, D. Morrison (eds), Algebraic geometry – Santa Cruz 1995. Proc. Symp. Pure Math. 62. AMS 1997 Google Scholar
  38. 38.
    Strominger, A., Yau, S.-T., Zaslow, E.: Mirror symmetry is T-duality. Nucl. Phys. B 479, 243–259 (1996) Google Scholar
  39. 39.
    Thaddeus, M.: Stable pairs, linear systems and the Verlinde formula. Invent. Math. 117, 317–353 (1994) MathSciNetzbMATHGoogle Scholar
  40. 40.
    Thaddeus, M.: Geometric invariant theory and flips. J. Am. Math. Soc. 9, 691–723 (1996) CrossRefMathSciNetzbMATHGoogle Scholar
  41. 41.
    Timmerscheidt, K.: Mixed Hodge theory for unitary local systems. J. Reine Angew. Math. 379, 152–171 (1987) MathSciNetzbMATHGoogle Scholar
  42. 42.
    Vafa, C.: String vacua and orbifoldized LG models. Mod. Phys. Lett. A 4, 1169–1185 (1989) MathSciNetGoogle Scholar
  43. 43.
    Vafa, C., Witten, E.: On orbifolds with discrete torsion. J. Geom. Phys. 15, 189–214 (1995) CrossRefMathSciNetzbMATHGoogle Scholar
  44. 44.
    Zaslow, E.: Topological orbifold models and quantum cohomology rings. Commun. Math. Phys. 156, 301–331 (1993)MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer-Verlag 2003

Authors and Affiliations

  • Tamás Hausel
    • 1
  • Michael Thaddeus
    • 2
  1. 1.Department of MathematicsUniversity of CaliforniaBerkeleyUSA
  2. 2.Department of MathematicsColumbia UniversityNew YorkUSA

Personalised recommendations