Advertisement

Experimental Brain Research

, Volume 238, Issue 1, pp 121–138 | Cite as

Muscle activities in similar arms performing identical tasks reveal the neural basis of muscle synergies

  • Laura Pellegrino
  • Martina Coscia
  • Maura CasadioEmail author
Research Article
  • 172 Downloads

Abstract

Are the muscle synergies extracted from multiple electromyographic signals an expression of neural information processing, or rather a by-product of mechanical and task constraints? To address this question, we asked 41 right-handed adults to perform a variety of motor tasks with their left and right arms. The analysis of the muscle activities resulted in the identification of synergies whose activation was different for the two sides. In particular, tasks involving the control of isometric forces resulted in larger differences. As the two arms essentially have identical biomechanical structure, we concluded that the differences observed in the activation of the respective synergies must be attributed to neural control.

Keywords

Upper limb Robotic evaluation Reaching Electromyography 

Notes

Acknowledgements

The authors are grateful to all participants of the study for volunteering their time. We want to thank Giorgia Stranieri, Amel Chief and Maddalena Mugnosso for the help during the experimental sessions, Dr. Susanna Summa and Dr. Camilla Pierella for helpful suggestions, Prof. Ferdinando Mussa-Ivaldi for his advice and critical review of the manuscript, Prof. Niels Birbaumer for his further revision of the manuscript, and Brenda Klem for proofreading the manuscript.

Author contributions

All the authors conceived the study, designed the experimental protocol and developed the experimental setup. LP collected the data. All authors analyzed the results, contributed to the discussion of the results and to writing of the manuscript. All authors read and approved the final manuscript.

Funding

This research was supported by Italian Multiple Sclerosis Foundation (FISM, 2013- Cod. 2013/R/5) and by Marie Curie Integration Grant FP7-PEOPLE- 2012-CIG- 334201 (REMAKE) Research projects of national interest (ModuLimb, PRIN-2015HFWRYY).

Compliance with ethical standards

Conflict of interest

The authors declared no potential conflict of interest with respect to the research, authorship, and/or publication of this article.

Supplementary material

221_2019_5679_MOESM1_ESM.docx (1.7 mb)
Supplementary material 1 (DOCX 1743 kb)

References

  1. Adam A, De Luca CJ, Erim Z (1998) Hand dominance and motor unit firing behavior. J Neurophysiol 80:1373–1382PubMedCrossRefPubMedCentralGoogle Scholar
  2. Alessandro C, Delis I, Nori F, Panzeri S, Berret B (2013) Muscle synergies in neuroscience and robotics: from input-space to task-space perspectives. Frontiers in computational neuroscience 7:43PubMedPubMedCentralCrossRefGoogle Scholar
  3. Annett M (1970) A classification of hand preference by association analysis. Br J Psychol 61:303–321PubMedCrossRefPubMedCentralGoogle Scholar
  4. Annett M (2002) Handedness and brain asymmetry: the right shift theory. Psychology Press, Hove, East SussexGoogle Scholar
  5. Annett J, Annett M, Hudson P, Turner A (1979) The control of movement in the preferred and non-preferred hands. Q J Exp Psychol 31:641–652PubMedCrossRefPubMedCentralGoogle Scholar
  6. Auerbach BM, Ruff CB (2006) Limb bone bilateral asymmetry: variability and commonality among modern humans. J Hum Evol 50:203–218PubMedCrossRefPubMedCentralGoogle Scholar
  7. Bagesteiro LB, Sainburg RL (2002) Handedness: dominant arm advantages in control of limb dynamics. J Neurophysiol 88:2408–2421PubMedCrossRefPubMedCentralGoogle Scholar
  8. Barroso FO, Torricelli D, Moreno JC, Taylor J, Gomez-Soriano J, Bravo-Esteban E, Piazza S, Santos C, Pons JL (2014) Shared muscle synergies in human walking and cycling. J Neurophysiol 112:1984–1998PubMedCrossRefPubMedCentralGoogle Scholar
  9. Batzianoulis I, El-Khoury S, Pirondini E, Coscia M, Micera S, Billard A (2017) EMG-based decoding of grasp gestures in reaching-to-grasping motions. Robot Auton Syst 91:59–70CrossRefGoogle Scholar
  10. Berger DJ, d’Avella A (2014) Effective force control by muscle synergies. Front Comput Neurosci 8:46PubMedPubMedCentralCrossRefGoogle Scholar
  11. Bernstein N (1967) The co-ordination and regulation of movements. Pergamon Press, OxfordGoogle Scholar
  12. Bizzi E, Cheung VC (2013) The neural origin of muscle synergies. Front Comput Neurosci 7:51PubMedPubMedCentralCrossRefGoogle Scholar
  13. Blank R, Miller V, von Voss H (2000) Human motor development and hand laterality: a kinematic analysis of drawing movements. Neurosci Lett 295:89–92PubMedCrossRefPubMedCentralGoogle Scholar
  14. Boulinguez P, Nougier V, Velay JL (2001) Manual asymmetries in reaching movement control. I: study of right-handers. Cortex J Devot Study Nerv Syst Behav 37:101–122CrossRefGoogle Scholar
  15. Cappellini G, Ivanenko YP, Poppele RE, Lacquaniti F (2006) Motor patterns in human walking and running. J Neurophysiol 95:3426–3437PubMedCrossRefPubMedCentralGoogle Scholar
  16. Carson RG, Goodman D, Elliott D (1992) Asymmetries in the discrete and pseudocontinuous regulation of visually guided reaching. Brain Cogn 18:169–191PubMedCrossRefPubMedCentralGoogle Scholar
  17. Carson RG, Chua R, Goodman D, Byblow WD, Elliott D (1995) The preparation of aiming movements. Brain Cogn 28:133–154PubMedCrossRefPubMedCentralGoogle Scholar
  18. Casadio M, Sanguineti V, Morasso PG, Arrichiello V (2006) Braccio di Ferro: a new haptic workstation for neuromotor rehabilitation. Technol Health Care 14:123–142PubMedCrossRefPubMedCentralGoogle Scholar
  19. Casadio M, Sanguineti V, Solaro C, Morasso PG (2007) A haptic robot reveals the adaptation capability of individuals with multiple sclerosis. Int J Robot Res 26:1225–1233CrossRefGoogle Scholar
  20. Casadio M, Sanguineti V, Morasso P, Solaro C (2008) Abnormal sensorimotor control, but intact force field adaptation, in multiple sclerosis subjects with no clinical disability. Mult Scler 14:330–342PubMedCrossRefGoogle Scholar
  21. Cheung VC, d’Avella A, Tresch MC, Bizzi E (2005) Central and sensory contributions to the activation and organization of muscle synergies during natural motor behaviors. J Neurosci 25:6419–6434PubMedPubMedCentralCrossRefGoogle Scholar
  22. Cheung VC, d’Avella A, Bizzi E (2009a) Adjustments of motor pattern for load compensation via modulated activations of muscle synergies during natural behaviors. J Neurophysiol 101:1235–1257PubMedCrossRefGoogle Scholar
  23. Cheung VC, Piron L, Agostini M, Silvoni S, Turolla A, Bizzi E (2009b) Stability of muscle synergies for voluntary actions after cortical stroke in humans. Proc Natl Acad Sci USA 106:19563–19568PubMedCrossRefGoogle Scholar
  24. Cheung VC, Turolla A, Agostini M, Silvoni S, Bennis C, Kasi P, Paganoni S, Bonato P, Bizzi E (2012) Muscle synergy patterns as physiological markers of motor cortical damage. Proc Natl Acad Sci 109:14652–14656PubMedCrossRefGoogle Scholar
  25. Cipriani C, Antfolk C, Controzzi M, Lundborg G, Rosen B, Carrozza MC, Sebelius F (2011) Online myoelectric control of a dexterous hand prosthesis by transradial amputees. IEEE Trans Neural Syst Rehabilit Eng 19:260–270CrossRefGoogle Scholar
  26. Corballis MC (1983) Human laterality. Academic Press, New YorkGoogle Scholar
  27. Coscia M, Cheung VC, Tropea P, Koenig A, Monaco V, Bennis C, Micera S, Bonato P (2014) The effect of arm weight support on upper limb muscle synergies during reaching movements. J Neuroeng Rehabilit 11:22CrossRefGoogle Scholar
  28. Coscia M, Monaco V, Martelloni C, Rossi B, Chisari C, Micera S (2015) Muscle synergies and spinal maps are sensitive to the asymmetry induced by a unilateral stroke. J Neuroeng Rehabilit 12:39CrossRefGoogle Scholar
  29. Coscia M, Tropea P, Monaco V, Micera S (2018) Muscle synergies approach and perspective on application to robot-assisted rehabilitation. In: Rehabilitation Robotics, Elsevier, pp 319–331Google Scholar
  30. Danziger Z, Mussa-Ivaldi FA (2012) The influence of visual motion on motor learning. J Neurosci 32:9859–9869PubMedPubMedCentralCrossRefGoogle Scholar
  31. d’Avella A, Saltiel P, Bizzi E (2003) Combinations of muscle synergies in the construction of a natural motor behavior. Nat Neurosci 6:300–308PubMedCrossRefPubMedCentralGoogle Scholar
  32. d’Avella A, Portone A, Fernandez L, Lacquaniti F (2006) Control of fast-reaching movements by muscle synergy combinations. J Neurosci 26:7791–7810PubMedPubMedCentralCrossRefGoogle Scholar
  33. d’Avella A, Fernandez L, Portone A, Lacquaniti F (2008) Modulation of phasic and tonic muscle synergies with reaching direction and speed. J Neurophysiol 100:1433–1454PubMedCrossRefPubMedCentralGoogle Scholar
  34. d’Avella A, Portone A, Lacquaniti F (2011) Superposition and modulation of muscle synergies for reaching in response to a change in target location. J Neurophysiol 106:2796–2812PubMedCrossRefPubMedCentralGoogle Scholar
  35. Diederichsen LP, Norregaard J, Dyhre-Poulsen P, Winther A, Tufekovic G, Bandholm T, Rasmussen LR, Krogsgaard M (2007) The effect of handedness on electromyographic activity of human shoulder muscles during movement. J Electromyogr Kinesiol 17:410–419PubMedCrossRefPubMedCentralGoogle Scholar
  36. Dipietro L, Krebs HI, Fasoli SE, Volpe BT, Stein J, Bever C, Hogan N (2007) Changing motor synergies in chronic stroke. J Neurophysiol 98:757–768PubMedCrossRefPubMedCentralGoogle Scholar
  37. Dominici N, Ivanenko YP, Cappellini G, d’Avella A, Mondì V, Cicchese M, Fabiano A, Silei T, Di Paolo A, Giannini C (2011) Locomotor primitives in newborn babies and their development. Science 334:997–999PubMedCrossRefPubMedCentralGoogle Scholar
  38. Duthilleul N, Pirondini E, Coscia M, Micera S (2015) Effect of handedness on muscle synergies during upper limb planar movements. Conf Proc Ann Int Conf IEEE Eng Med Biol Soc IEEE Eng Med Biol Soc Ann Conf 2015:3452–3455Google Scholar
  39. Elliott D, Roy EA, Goodman D, Carson RG, Chua R, Maraj BK (1993) Asymmetries in the preparation and control of manual aiming movements. Can J Exp Psychol Revue 47:570CrossRefGoogle Scholar
  40. Farina D, Kallenberg LA, Merletti R, Hermens HJ (2003) Effect of side dominance on myoelectric manifestations of muscle fatigue in the human upper trapezius muscle. Eur J Appl Physiol 90:480–488PubMedCrossRefPubMedCentralGoogle Scholar
  41. Flanders M (1991) Temporal patterns of muscle activation for arm movements in three-dimensional space. J Neurosci 11:2680–2693PubMedPubMedCentralCrossRefGoogle Scholar
  42. Freitas SM, Duarte M, Latash ML (2006) Two kinematic synergies in voluntary whole-body movements during standing. J Neurophysiol 95:636–645PubMedCrossRefPubMedCentralGoogle Scholar
  43. Frere J, Hug F (2012) Between-subject variability of muscle synergies during a complex motor skill. Front Comput Neurosci 6:99PubMedPubMedCentralCrossRefGoogle Scholar
  44. Friedli WG, Fuhr P, Wiget W (1987) Detection threshold for percutaneous electrical stimuli: asymmetry with respect to handedness. J Neurol Neurosurg Psychiatry 50:870–876PubMedPubMedCentralCrossRefGoogle Scholar
  45. Fugl-Meyer A, Eriksson A, Sjöström M, Söderström G (1982) Is muscle structure influenced by genetical or functional factors? A study of three forearm muscles. Acta Physiol 114:277–281CrossRefGoogle Scholar
  46. Giszter S, Patil V, Hart C (2007) Primitives, premotor drives, and pattern generation: a combined computational and neuroethological perspective. Prog Brain Res 165:323–346PubMedCrossRefPubMedCentralGoogle Scholar
  47. Goble DJ, Brown SH (2008) The biological and behavioral basis of upper limb asymmetries in sensorimotor performance. Neurosci Biobehav Rev 32:598–610PubMedCrossRefPubMedCentralGoogle Scholar
  48. Hart CB, Giszter SF (2010) A neural basis for motor primitives in the spinal cord. J Neurosci 30:1322–1336PubMedPubMedCentralCrossRefGoogle Scholar
  49. Heath M, Roy EA (2000) The expression of manual asymmetries following extensive training of the nondominant hand: a kinematic perspective. Brain Cogn 43:252–257PubMedPubMedCentralGoogle Scholar
  50. Hermens HJ, Freriks B, Disselhorst-Klug C, Rau G (2000) Development of recommendations for SEMG sensors and sensor placement procedures. J Electromyogr Kinesiol 10:361–374PubMedCrossRefPubMedCentralGoogle Scholar
  51. Ison M, Artemiadis P (2014) The role of muscle synergies in myoelectric control: trends and challenges for simultaneous multifunction control. J Neural Eng 11:051001PubMedCrossRefPubMedCentralGoogle Scholar
  52. Ivanenko YP, Poppele RE, Lacquaniti F (2004) Five basic muscle activation patterns account for muscle activity during human locomotion. J Physiol 556:267–282PubMedPubMedCentralCrossRefGoogle Scholar
  53. Kuiken TA, Lowery MM, Stoykov NS (2003) The effect of subcutaneous fat on myoelectric signal amplitude and cross-talk. Prosthet Orthot Int 27:48–54PubMedPubMedCentralGoogle Scholar
  54. Kutch JJ, Valero-Cuevas FJ (2011) Muscle redundancy does not imply robustness to muscle dysfunction. J Biomech 44:1264–1270PubMedPubMedCentralCrossRefGoogle Scholar
  55. Kutch JJ, Valero-Cuevas FJ (2012) Challenges and new approaches to proving the existence of muscle synergies of neural origin. PLoS Comput Biol 8:e1002434PubMedPubMedCentralCrossRefGoogle Scholar
  56. Latash ML, Anson JG (2006) Synergies in health and disease: relations to adaptive changes in motor coordination. Phys Ther 86:1151–1160PubMedCrossRefPubMedCentralGoogle Scholar
  57. Lee DD, Seung HS (2001) Algorithms for non-negative matrix factorization. In: Advances in neural information processing systems, pp 556–562Google Scholar
  58. Leib R, Rubin I, Nisky I (2018) Force feedback delay affects perception of stiffness but not action, and the effect depends on the hand used but not on the handedness. J Neurophysiol 120(2):781–794PubMedCrossRefPubMedCentralGoogle Scholar
  59. Levine AJ, Hinckley CA, Hilde KL, Driscoll SP, Poon TH, Montgomery JM, Pfaff SL (2014) Identification of a cellular node for motor control pathways. Nat Neurosci 17:586–593PubMedPubMedCentralCrossRefGoogle Scholar
  60. Liu X, Mosier KM, Mussa-Ivaldi FA, Casadio M, Scheidt RA (2011) Reorganization of finger coordination patterns during adaptation to rotation and scaling of a newly learned sensorimotor transformation. J Neurophysiol 105:454–473PubMedCrossRefGoogle Scholar
  61. Muceli S, Jiang N, Farina D (2014) Extracting signals robust to electrode number and shift for online simultaneous and proportional myoelectric control by factorization algorithms. IEEE Trans Neural Syst Rehabilit Eng 22:623–633CrossRefGoogle Scholar
  62. Mussa-Ivaldi FA, Bizzi E (2000) Motor learning through the combination of primitives. Philoso Trans R Soc B 355:1755–1769CrossRefGoogle Scholar
  63. Neptune RR, Clark DJ, Kautz SA (2009) Modular control of human walking: a simulation study. J Biomech 42:1282–1287PubMedPubMedCentralCrossRefGoogle Scholar
  64. Oldfield RC (1971) The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia 9:97–113CrossRefGoogle Scholar
  65. Osu R, Burdet E, Franklin DW, Milner TE, Kawato M (2003) Different mechanisms involved in adaptation to stable and unstable dynamics. J Neurophysiol 90:3255–3269PubMedCrossRefGoogle Scholar
  66. Overduin SA, d’Avella A, Carmena JM, Bizzi E (2012) Microstimulation activates a handful of muscle synergies. Neuron 76:1071–1077PubMedPubMedCentralCrossRefGoogle Scholar
  67. Pellegrino L, Coscia M, Muller M, Solaro C, Casadio M (2018) Evaluating upper limb impairments in multiple sclerosis by exposure to different mechanical environments. Sci Rep 8:2110PubMedPubMedCentralCrossRefGoogle Scholar
  68. Perotto A, Delagi EF (2005) Anatomical guide for the electromyographer: the limbs and trunk. Charles C Thomas PublisherGoogle Scholar
  69. Ranganathan R, Krishnan C (2012) Extracting synergies in gait: using EMG variability to evaluate control strategies. J Neurophysiol 108:1537–1544PubMedPubMedCentralCrossRefGoogle Scholar
  70. Roh J, Rymer WZ, Beer RF (2012) Robustness of muscle synergies underlying three-dimensional force generation at the hand in healthy humans. J Neurophysiol 107:2123–2142PubMedPubMedCentralCrossRefGoogle Scholar
  71. Roh J, Rymer WZ, Perreault EJ, Yoo SB, Beer RF (2013) Alterations in upper limb muscle synergy structure in chronic stroke survivors. J Neurophysiol 109:768–781PubMedCrossRefPubMedCentralGoogle Scholar
  72. Roy EA, Kalbfleisch L, Elliott D (1994) Kinematic analyses of manual asymmetries in visual aiming movements. Brain Cogn 24:289–295PubMedCrossRefPubMedCentralGoogle Scholar
  73. Sainburg RL (2002) Evidence for a dynamic-dominance hypothesis of handedness. Exp Brain Res 142:241–258PubMedCrossRefPubMedCentralGoogle Scholar
  74. Sainburg RL (2005) Handedness: differential specializations for control of trajectory and position. Exerc Sport Sci Rev 33:206–213PubMedCrossRefPubMedCentralGoogle Scholar
  75. Sainburg RL, Schaefer SY (2004) Interlimb differences in control of movement extent. J Neurophysiol 92:1374–1383PubMedPubMedCentralCrossRefGoogle Scholar
  76. Santello M (2002) Kinematic synergies for the control of hand shape. Arch Ital Biol 140:221–228PubMedPubMedCentralGoogle Scholar
  77. Sathiamoorthy A, Sathiamoorthy SS (1990) Limb dominance and motor conduction velocity of median and ulnar nerves. Indian J Physiol Pharmacol 34:51–53PubMedPubMedCentralGoogle Scholar
  78. Semmler JG, Nordstrom MA (1998) Hemispheric differences in motor cortex excitability during a simple index finger abduction task in humans. J Neurophysiol 79:1246–1254PubMedCrossRefPubMedCentralGoogle Scholar
  79. Steele KM, Tresch MC, Perreault EJ (2015) Consequences of biomechanically constrained tasks in the design and interpretation of synergy analyses. J Neurophysiol 113:2102–2113PubMedPubMedCentralCrossRefGoogle Scholar
  80. Tan U (1989) Spinal motor lateralization assessed by recovery curve of H reflex from wrist flexors in right-, and left-handed normal subjects. Int J Neurosci 48:309–312PubMedCrossRefPubMedCentralGoogle Scholar
  81. Teulings HL, Contreras-Vidal JL, Stelmach GE, Adler CH (1997) Parkinsonism reduces coordination of fingers, wrist, and arm in fine motor control. Exp Neurol 146:159–170PubMedCrossRefPubMedCentralGoogle Scholar
  82. Ting LH, McKay JL (2007) Neuromechanics of muscle synergies for posture and movement. Curr Opin Neurobiol 17:622–628PubMedCrossRefPubMedCentralGoogle Scholar
  83. Ting LH, Chiel HJ, Trumbower RD, Allen JL, McKay JL, Hackney ME, Kesar TM (2015) Neuromechanical principles underlying movement modularity and their implications for rehabilitation. Neuron 86:38–54PubMedPubMedCentralCrossRefGoogle Scholar
  84. Torricelli D, Barroso F, Coscia M, Alessandro C, Lunardini F, Esteban EB, d’Avella A (2016) Muscle synergies in clinical practice: theoretical and practical implications. In: Emerging therapies in neurorehabilitation II. Springer, pp 251–272Google Scholar
  85. Tresch MC, Cheung VC, d’Avella A (2006) Matrix factorization algorithms for the identification of muscle synergies: evaluation on simulated and experimental data sets. J Neurophysiol 95:2199–2212PubMedCrossRefPubMedCentralGoogle Scholar
  86. Tropea P, Monaco V, Coscia M, Posteraro F, Micera S (2013) Effects of early and intensive neuro-rehabilitative treatment on muscle synergies in acute post-stroke patients: a pilot study. J Neuroeng Rehabilit 10:103CrossRefGoogle Scholar
  87. van Doorn RR (2008) Manual asymmetries in the temporal and spatial control of aimed movements. Hum Mov Sci 27:551–576PubMedCrossRefPubMedCentralGoogle Scholar
  88. Volkmann J, Schnitzler A, Witte OW, Freund H (1998) Handedness and asymmetry of hand representation in human motor cortex. J Neurophysiol 79:2149–2154PubMedCrossRefPubMedCentralGoogle Scholar
  89. Wang J, Sainburg RL (2007) The dominant and nondominant arms are specialized for stabilizing different features of task performance. Exp Brain Res 178:565–570PubMedCrossRefPubMedCentralGoogle Scholar
  90. Washabaugh EP, Krishnan C (2018) A wearable resistive robot facilitates locomotor adaptations during gait. Restor Neurol Neurosci 36:215–223PubMedPubMedCentralGoogle Scholar
  91. Woodworth RS (1899) Accuracy of voluntary movement. Psychol Rev 3:iGoogle Scholar
  92. Yakovenko S, Krouchev N, Drew T (2011) Sequential activation of motor cortical neurons contributes to intralimb coordination during reaching in the cat by modulating muscle synergies. J Neurophysiol 105:388–409PubMedCrossRefPubMedCentralGoogle Scholar
  93. Zardoshti-Kermani M, Wheeler BC, Badie K, Hashemi RM (1995) EMG feature evaluation for movement control of upper extremity prostheses. IEEE Trans Rehabilit Eng 3:324–333CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Informatics, Bioengineering, Robotics and Systems EngineeringUniversity of GenoaGenoaItaly
  2. 2.Bertarelli Foundation Chair in Translational NeuroengineeringEcole Polytechnique Federale de LausanneLausanneSwitzerland
  3. 3.Wyss Center for Bio- and NeuroengineeringGenevaSwitzerland

Personalised recommendations