Skip to main content
Log in

The influence of pacer-movement continuity and pattern matching on auditory-motor synchronisation

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

People commonly move along with auditory rhythms in the environment. Although the processes underlying such sensorimotor synchronisation have been extensively investigated in the previous research, the properties of auditory rhythms that facilitate the synchronisation remain largely unclear. This study explored the possible benefits of a continuity matching between auditory pacers and the movement produced as well as of a spatial pattern matching that has been previously demonstrated with visual pacers. Participants synchronised either finger tapping or forearm oscillations with either discrete or continuous pacers. The pacers had either a spatial pattern (left–right panning) that matched the movement pattern produced or no spatial pattern. The accuracy and variability of synchronisation were assessed by the mean and standard deviation of the asynchronies, respectively, between participant’s movement and the pacers. Results indicated that synchronisation was more accurate and less variable for discrete pacers and continuous movement (i.e., forearm oscillations). The interaction between those two factors involved a more complex relationship than a simple continuity match benefit. Although synchronisation variability increased with continuous pacers for both types of movement, this increase was smaller for continuous movement than discrete movement, suggesting that continuous movement is more beneficial only for continuous pacers. Moreover, the results revealed limited benefits of spatial pattern matching on auditory-motor synchronisation variability, which might be due to lower spatial resolution of the auditory sensory modality. Together, these findings confirm that sensorimotor synchronisation is modulated by complex relations between pacer and movement properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Armstrong A, Issartel J (2014) Sensorimotor synchronization with audio-visual stimuli: limited multisensory integration. Exp Brain Res 232(11):3453–3463. https://doi.org/10.1007/s00221-014-4031-9

    Article  PubMed  Google Scholar 

  • Armstrong A, Issartel J, Varlet M, Marin L (2013) The supplementation of spatial information improves coordination. Neurosci Lett 548:212–216. https://doi.org/10.1016/j.neulet.2013.05.013

    Article  CAS  PubMed  Google Scholar 

  • Brainard D (1997) The psychophysics toolbox. Spat Vis 10(4):433–436. https://doi.org/10.1163/156856897X00357

    Article  CAS  PubMed  Google Scholar 

  • Cohen J (1988) Statistical power analysis for the behavioural sciences, 2nd edn. Academic Press, New York

    Google Scholar 

  • Conway CM, Christiansen MH (2005) Modality-constrained statistical learning of tactile, visual, and auditory sequences. J Exp Psychol Learn Mem Cognit 31(1):24. https://doi.org/10.1037/0278-7393.31.1.24

    Article  Google Scholar 

  • Eerola T, Luck G, Toiviainen P (2006) An investigation of pre-schoolers’ corporeal synchronization with music. In: Proceedings of the 9th international conference on music perception and cognition. The Society for Music Perception and Cognition and European Society for the Cognitive Sciences of Music Bologna, pp. 472–476

  • Elliot MT, Wing AM, Welchman AE (2009) Being discrete helps keep to the beat. Exp Brain Res 192(4):731–737. https://doi.org/10.1007/s00221-008-1646-8

    Article  Google Scholar 

  • Faul F, Erdfelder E, Lang AG, Buchner A (2007) G* Power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav Res Methods 39(2):175–191

    Article  PubMed  Google Scholar 

  • Franz VH, Loftus GR (2012) Standard errors and confidence intervals in within-subjects designs: generalizing Loftus and Masson (1994) and avoiding the biases of alternative accounts. Psychon Bull Rev 19(3):395–404. https://doi.org/10.3758/s13423-012-0230-1

    Article  PubMed  PubMed Central  Google Scholar 

  • Hommel B (1996) SR compatibility effects without response uncertainty. The Quarterly Journal of Experimental Psychology: Section A 49(3):546–571

    Article  Google Scholar 

  • Hommel BE, Prinz WE (1997) Theoretical issues in stimulus-response compatibility. In: Symposium on the theory of SR Compatibility, Jun, 1995, Benediktbeuern, Munich, Germany; The contributions to this book are the fruits of the aforementioned conference. Elsevier Science/JAI Press

  • Hove MJ, Keller P (2010) Spatiotemporal relations and movement trajectories in visuomotor synchronization. Music Percept 28(1):15–26. https://doi.org/10.1525/mp.2010.28.1.15

    Article  Google Scholar 

  • Hove MJ, Fairhurst MT, Kotz SA, Keller PE (2013) Synchronizing with auditory and visual rhythms: an fMRI assessment of modality differences and modality appropriateness. Neuroimage 67:313–321

    Article  PubMed  Google Scholar 

  • Iacoboni M, Woods RP, Mazziotta JC (1998) Bimodal (auditory and visual) left frontoparietal circuitry for sensorimotor integration and sensorimotor learning. Brain 121(11):2135–2143

    Article  PubMed  Google Scholar 

  • Jolliffe IT (2002) Principal component analysis, 2nd edn. Springer, New York

    Google Scholar 

  • Lenc T, Keller PE, Varlet M, Nozaradan S (2018) Neural tracking of the musical beat is enhanced by low-frequency sounds. Proc Natl Acad Sci 115(32):8221–8226

    Article  CAS  PubMed  Google Scholar 

  • Lesaffre M, Voogdt LD, Leman M, Baets BD, Meyer HD, Martens JP (2008) How potential users of music search and retrieval systems describe the semantic quality of music. J the Assoc Inf Sci Technol 59(5):695–707

    Article  Google Scholar 

  • Lorås H, Sigmundsson H, Talcott JB, Öhberg F, Stensdotter AK (2012) Timing continuous or discontinuous movements across effectors specified by different pacing modalities and intervals. Exp Brain Res 220(3–4):335–347

    Article  PubMed  Google Scholar 

  • Martin JH (2005) The corticospinal system: from development to motor control. Neurosci 11(2):161–173

    Google Scholar 

  • Mates J (1994) A model of synchronization of motor acts to a stimulus sequence. Biol Cybern 70(5):463–473. https://doi.org/10.1007/BF00203239

    Article  CAS  PubMed  Google Scholar 

  • McAnally K (2002) Timing of finger tapping to frequency modulated acoustic stimuli. Acta Physiol (Oxf) 109(3):331–338. https://doi.org/10.1016/S0001-6918(01)00065-8

    Article  Google Scholar 

  • Miyata K, Varlet M, Miura A, Kudo K, Keller PE (2017) Modulation of individual auditory-motor coordination dynamics through interpersonal visual coupling. Sci Rep 7(1):16220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nozaradan S, Peretz I, Keller PE (2016) Individual differences in rhythmic cortical entrainment correlate with predictive behavior in sensorimotor synchronization. Sci Rep 6:20612

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pelli DG (1997) The VideoToolbox software for visual psychophysics: transforming numbers into movies. Spat Vis 10(4):437–442. https://doi.org/10.1163/156856897X00366

    Article  CAS  PubMed  Google Scholar 

  • Peters BT, Haddad JM, Heiderscheit BC, Van Emmerik RE, Hamill J (2003) Limitations in the use and interpretation of continuous relative phase. J Biomech 36(2):271–274

    Article  PubMed  Google Scholar 

  • Posner MI, Nissen MJ, Klein RM (1976) Visual dominance: an information processing account of its origins and significance. Psychol Rev 83(2):157. https://doi.org/10.1037/0033-295X.83.2.157

    Article  CAS  PubMed  Google Scholar 

  • Prinz W (1997) Perception and action planning. Eur J Cognit Psychol 9(2):129–154

    Article  Google Scholar 

  • Repp B (2005) Sensorimotor synchronization: a review of the tapping literature. Psychon Bull Rev 12(6):969–992. https://doi.org/10.3758/BF03206433

    Article  PubMed  Google Scholar 

  • Repp BH, Keller PE (2004) Adaptation to tempo changes in sensorimotor synchronization: effects of intention, attention, and awareness. Q J Exp Psychol Sect A 57(3):499–521

    Article  Google Scholar 

  • Repp BH, Penel A (2002) Auditory dominance in temporal processing: new evidence from synchronization with simultaneous visual and auditory sequences. J Exp Psychol Hum Percept Perform 28(5):1085–1099. https://doi.org/10.1037//0096-1523.28.5.1085

    Article  PubMed  Google Scholar 

  • Repp BH, Penel A (2004) Rhythmic movement is attracted more strongly to auditory than to visual rhythms. Psychol Res 68(4):252–270

    Article  PubMed  Google Scholar 

  • Repp BH, Su YH (2013) Sensorimotor synchronization: a review of recent research (2006–2012). Psychon Bull Rev 20(3):403–452. https://doi.org/10.3758/s13423-012-0371-2

    Article  PubMed  Google Scholar 

  • Rodger MW, Craig CM (2011) Timing movements to interval durations specified by discrete or continuous sounds. Exp Brain Res 214(3):393–402. https://doi.org/10.1007/s00221-011-2837-2

    Article  PubMed  Google Scholar 

  • Roerdink M, Ophoff ED, Peper CLE, Beek PJ (2008) Visual and musculoskeletal underpinnings of anchoring in rhythmic visuo-motor tracking. Exp Brain Res 184(2):143–156

    Article  PubMed  Google Scholar 

  • Semjen A, Vorberg D, Schulze HH (1998) Getting synchronized with the metronome: comparisons between phase and period correction. Psychol Res 61(1):44–55. https://doi.org/10.1007/s004260050012

    Article  Google Scholar 

  • Spencer RM, Zelaznik HN, Diedrichsen J, Ivry RB (2003) Disrupted timing of discontinuous but not continuous movements by cerebellar lesions. Science 300(5624):1437–1439

    Article  CAS  PubMed  Google Scholar 

  • Studenka BE, Zelaznik HN (2011a) Synchronization in repetitive smooth movement requires perceptible events. Acta Physiol (Oxf) 136(3):432–441. https://doi.org/10.1016/j.actpsy.2011.01.011

    Article  Google Scholar 

  • Studenka BE, Zelaznik HN (2011b) Circle drawing does not exhibit auditory–motor synchronization. J Mot Behav 43(3):185–191

    Article  PubMed  Google Scholar 

  • Studenka BE, Zelaznik HN, Balasubramaniam R (2012) The distinction between tapping and circle drawing with and without tactile feedback: an examination of the sources of timing variance. Q J Exp Psychol 65(6):1086–1100

    Article  Google Scholar 

  • Torre K, Balasubramaniam R (2009) Two different processes for sensorimotor synchronisation in continuous and discontinuous rhythmic movements. Exp Brain Res 199(2):157–166. https://doi.org/10.1007/s00221-009-1991-2

    Article  PubMed  Google Scholar 

  • Torre K, Delignières D (2008) Unraveling the finding of 1/f β noise in self-paced and synchronized tapping: a unifying mechanistic model. Biol Cybern 99:159–170

    Article  PubMed  Google Scholar 

  • Torre K, Varlet M, Marmelat V (2013) Predicting the biological variability of environmental rhythms: weak or strong anticipation for sensorimotor synchronization? Brain Cogn 83(3):342–350

    Article  PubMed  Google Scholar 

  • Umiltá C, Nicoletti R (1990) Spatial stimulus-response compatibility. Adv Psychol 65:89–116

    Article  Google Scholar 

  • Varlet M, Richardson MJ (2011) Computation of continuous relative phase and modulation of frequency of human movement. J Biomech 44(6):1200–1204

    Article  PubMed  Google Scholar 

  • Varlet M, Marin L, Issartel J, Schmidt RC, Bardy BG (2012) Continuity of visual and auditory rhythms influences sensorimotor coordination. PLoS ONE 7(9):e44082

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Varlet M, Coey CA, Schmidt RC, Marin L, Bardy BG, Richardson MJ (2014a) Influence of stimulus velocity profile on rhythmic visuomotor coordination. J Exp Psychol Hum Percept Perform 40(5):1849–1860

    Article  PubMed  Google Scholar 

  • Varlet M, Marin L, Capdevielle D, Del-Monte J, Schmidt R, Salesse R, Boulenger JP, Bardy BG, Raffard S (2014b) Difficulty leading interpersonal coordination: towards an embodied signature of social anxiety disorder. Front Behav Neurosci 8:29

    Article  PubMed  PubMed Central  Google Scholar 

  • Vos PG, Mates J, van Kruysbergen NW (1995) The perceptual centre of a stimulus as the cue for synchronization to a metronome: evidence from asynchronies. Q J Exp Psychol Sect A 48(4):1024–1040

    Article  CAS  Google Scholar 

  • Zelic G, Mottet D, Lagarde J (2012) Behavioral impact of unisensory and multisensory audio-tactile events: pros and cons for interlimb coordination in juggling. PLoS ONE 7(2):e32308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zelic G, Mottet D, Lagarde J (2016a) Perceptuo-motor compatibility governs multisensory integration in bimanual coordination dynamics. Exp Brain Res 234(2):463–474

    Article  PubMed  Google Scholar 

  • Zelic G, Varlet M, Kim J, Davis C (2016b) Influence of pacer continuity on continuous and discontinuous visuo-motor synchronisation. Acta Physiol (Oxf) 169:61–70

    Google Scholar 

  • Zelic G, Varlet M, Wishart J, Kim J, Davis C (2018) The dual influence of pacer continuity and pacer pattern for visuomotor synchronisation. Neurosci Lett 683:150–159

    Article  CAS  PubMed  Google Scholar 

  • Zentner M, Eerola T (2010) Rhythmic engagement with music in infancy. Proc Natl Acad Sci 107(13):5768–5778

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The project was supported by the following grants from the Australian Research Council—ARC Discovery Project (DP170104322) and Future Fellowship (FT140101162) awarded to PK.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuel Varlet.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zelic, G., Nijhuis, P., Charaf, S.A. et al. The influence of pacer-movement continuity and pattern matching on auditory-motor synchronisation. Exp Brain Res 237, 2705–2713 (2019). https://doi.org/10.1007/s00221-019-05625-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-019-05625-9

Keywords

Navigation