Advertisement

Experimental Brain Research

, Volume 237, Issue 6, pp 1531–1538 | Cite as

Utricular function in vestibular neuritis: a pilot study of concordance/discordance between ocular vestibular evoked myogenic potentials and ocular cycloposition

  • Marcello CherchiEmail author
Research Article

Abstract

Vestibular neuritis (VN) can affect utricular afferents. Utricular function can be assessed by ocular vestibular evoked myogenic potentials (oVEMPs) whose abnormalities include weak or absent responses, and ocular cycloposition whose abnormalities include ocular torsion (OT). When studied independently in vestibular neuritis, oVEMPs are abnormal in 61–82% of cases, and OT is present in 72–80% of cases. The similar range of abnormalities suggests the hypothesis that these tests should be concordantly abnormal. We tested this hypothesis by identifying consecutive adult cases of VN in whom both oVEMPs and OT were performed. OT and oVEMP overlapped (both were abnormal) in only 47% of cases. In 40% of cases oVEMPs alone were abnormal, and in 13% of cases, OT alone was present. These results suggest that oVEMPs and OT assess different aspects of utricular function believed to arise from discrete zones of the utricular macula; the former are thought to reflect the activity of extra-striolar afferents (which detect constant acceleration), and the latter reflects the activity of striolar afferents (which detect change in acceleration).

Keywords

Utricle Vestibular neuritis Vestibular function Evoked potential Ocular torsion 

Notes

Funding

None.

Compliance with ethical standards

Conflict of interest

The author declares no conflict of interest.

References

  1. Angelaki DE, Newlands SD, Dickman JD (2002) Inactivation of semicircular canals causes adaptive increases in otolith-driven tilt responses. J Neurophysiol 87:1635–1640.  https://doi.org/10.1152/jn.00775.2001 CrossRefGoogle Scholar
  2. Baloh RW, Ishyama A, Wackym PA, Honrubia V (1996) Vestibular neuritis: clinical-pathologic correlation. Otolaryngol Head Neck Surg 114:586–592.  https://doi.org/10.1016/S0194-59989670251-6 CrossRefGoogle Scholar
  3. Bergström B (1973) Morphological studies of the vestibular nerve. In: Otolaryngology. University of Uppsala, Uppsala, p 39Google Scholar
  4. Bohmer A (1999) The subjective visual vertical as a clinical parameter for acute and chronic vestibular (otolith) disorders. Acta Otolaryngol 119:126–127CrossRefGoogle Scholar
  5. Brandt U (1962) Reorientation and vestibular function. A comparison in the human centrifuge between fighter pilots and non-aviators. Acta Otolaryngol 54:543–552CrossRefGoogle Scholar
  6. Brandt T, Dieterich M (1993) Skew deviation with ocular torsion: a vestibular brainstem sign of topographic diagnostic value. Ann Neurol 33:528–534.  https://doi.org/10.1002/ana.410330518 CrossRefGoogle Scholar
  7. Brandt T, Dieterich M (1994) Vestibular syndromes in the roll plane: topographic diagnosis from brainstem to cortex. Ann Neurol 36:337–347.  https://doi.org/10.1002/ana.410360304 CrossRefGoogle Scholar
  8. Choi KD, Oh SY, Kim HJ, Koo JW, Cho BM, Kim JS (2007) Recovery of vestibular imbalances after vestibular neuritis. Laryngoscope 117:1307–1312.  https://doi.org/10.1097/MLG.0b013e31805c08ac CrossRefGoogle Scholar
  9. Choi SY, Lee SH, Kim HJ, Kim JS (2014) Impaired modulation of the otolithic function in acute unilateral cerebellar infarction. Cerebellum 13:362–371.  https://doi.org/10.1007/s12311-013-0544-1 CrossRefGoogle Scholar
  10. Choi JW, Kang SI, Rhee JH, Choi BY, Kim JS, Koo JW (2015) Clinical implication of ocular torsion in peripheral vestibulopathy. Eur Arch Otorhinolaryngol 272:1613–1617.  https://doi.org/10.1007/s00405-014-2952-3 CrossRefGoogle Scholar
  11. Clarke AH, Schonfeld U, Helling K (2003) Unilateral examination of utricle and saccule function. J Vestib Res 13:215–225 (PMID: 15096665) Google Scholar
  12. Curthoys IS (2000) Vestibular compensation and substitution. Curr Opin Neurol 13:27–30CrossRefGoogle Scholar
  13. Curthoys IS (2010) A critical review of the neurophysiological evidence underlying clinical vestibular testing using sound, vibration and galvanic stimuli. Clin Neurophysiol 121:132–144.  https://doi.org/10.1016/j.clinph.2009.09.027 CrossRefGoogle Scholar
  14. Curthoys IS, Iwasaki S, Chihara Y, Ushio M, McGarvie LA, Burgess AM (2011) The ocular vestibular-evoked myogenic potential to air-conducted sound; probable superior vestibular nerve origin. Clin Neurophysiol 122:611–616.  https://doi.org/10.1016/j.clinph.2010.07.018 CrossRefGoogle Scholar
  15. Curthoys IS, Vulovic V, Burgess AM et al (2014) Neural basis of new clinical vestibular tests: otolithic neural responses to sound and vibration. Clin Exp Pharmacol Physiol 41:371–380.  https://doi.org/10.1111/1440-1681.12222 CrossRefGoogle Scholar
  16. Curthoys IS (2017) The new vestibular stimuli: sound and vibration-anatomical, physiological and clinical evidence. Exp Brain Res 235:957–972.  https://doi.org/10.1007/s00221-017-4874-y CrossRefGoogle Scholar
  17. Curthoys IS, MacDougall HG, Vidal PP, de Waele C (2017) Sustained and transient vestibular systems: a physiological basis for interpreting vestibular function. Front Neurol 8:117.  https://doi.org/10.3389/fneur.2017.00117 CrossRefGoogle Scholar
  18. Curthoys IS, Grant JW, Burgess AM, Pastras CJ, Brown DJ, Manzari L (2018) Otolithic receptor mechanisms for vestibular-evoked myogenic potentials: a review. Front Neurol 9:15.  https://doi.org/10.3389/fneur.2018.00366 CrossRefGoogle Scholar
  19. Curthoys IS, Halmagyi GM (1995) Vestibular compensation: a review of the oculomotor, neural, and clinical consequences of unilateral vestibular loss. J Vestib Res 5:67–107CrossRefGoogle Scholar
  20. de Burlet H (1924) Zur Innervation der Macula sacculi bei Säugetieren. Anatomischer Anzeiger 58:26–32Google Scholar
  21. Fernandez C, Goldberg JM, Abend WK (1972) Response to static tilts of peripheral neurons innervating otolith organs of the squirrel monkey. J Neurophysiol 35:978–987.  https://doi.org/10.1152/jn.1972.35.6.978 CrossRefGoogle Scholar
  22. Fernandez C, Goldberg JM (1976a) Physiology of peripheral neurons innervating otolith organs of the squirrel monkey. I. Response to static tilts and to long-duration centrifugal force. J Neurophysiol 39:970–984.  https://doi.org/10.1152/jn.1976.39.5.970 CrossRefGoogle Scholar
  23. Fernandez C, Goldberg JM (1976b) Physiology of peripheral neurons innervating otolith organs of the squirrel monkey. III. Response dynamics. J Neurophysiol 39:996–1008.  https://doi.org/10.1152/jn.1976.39.5.996 CrossRefGoogle Scholar
  24. Fetter M, Zee DS (1988) Recovery from unilateral labyrinthectomy in rhesus monkey. J Neurophysiol 59:370–393.  https://doi.org/10.1152/jn.1988.59.2.370 CrossRefGoogle Scholar
  25. Fife TD, Colebatch JG, Kerber KA et al (2017) Practice guideline: Cervical and ocular vestibular evoked myogenic potential testing: report of the guideline development, dissemination, and implementation Subcommittee of the American Academy of Neurology. Neurology 89:2288–2296.  https://doi.org/10.1212/WNL.0000000000004690 CrossRefGoogle Scholar
  26. Friedmann I, House W (1980) Vestibular neuronitis. Electron microscopy of Scarpa's ganglion. J Laryngol Otol 94:877–883CrossRefGoogle Scholar
  27. Fundakowski CE, Anderson J, Angeli S (2012) Cross-sectional vestibular nerve analysis in vestibular neuritis. Ann Otol Rhinol Laryngol 121:466–470.  https://doi.org/10.1177/000348941212100707 CrossRefGoogle Scholar
  28. Gacek RR (1999) The pathology of facial and vestibular neuronitis. Am J Otolaryngol 20:202–210CrossRefGoogle Scholar
  29. Gacek RR, Gacek MR (2002) The three faces of vestibular ganglionitis. Ann Otol Rhinol Laryngol 111:103–114.  https://doi.org/10.1177/000348940211100201 CrossRefGoogle Scholar
  30. Gacek RR, Rasmussen GL (1961) Fiber analysis of the statoacoustic nerve of guinea pig, cat, and monkey. Anat Rec 139:455–463CrossRefGoogle Scholar
  31. Galiana HL, Flohr H, Jones GM (1984) A reevaluation of intervestibular nuclear coupling: its role in vestibular compensation. J Neurophysiol 51:242–259.  https://doi.org/10.1152/jn.1984.51.2.242 CrossRefGoogle Scholar
  32. Goldberg JM, Desmadryl G, Baird RA, Fernandez C (1990) The vestibular nerve of the chinchilla. IV. Discharge properties of utricular afferents. J Neurophysiol 63:781–790.  https://doi.org/10.1152/jn.1990.63.4.781 CrossRefGoogle Scholar
  33. Goto F, Ban Y, Tsutumi T (2011) Acute audiovestibular deficit with complete ocular tilt reaction and absent VEMPs. Eur Arch Otorhinolaryngol 268:1093–1096.  https://doi.org/10.1007/s00405-011-1574-2 CrossRefGoogle Scholar
  34. Grant W, Curthoys I (2017) Otoliths—accelerometer and seismometer; implications in vestibular evoked myogenic potential (VEMP). Hear Res 353:26–35.  https://doi.org/10.1016/j.heares.2017.07.012 CrossRefGoogle Scholar
  35. Gresty MA, Bronstein AM, Brandt T, Dieterich M (1992) Neurology of otolith function. Peripheral and central disorders. Brain 115(Pt 3):647–673CrossRefGoogle Scholar
  36. Halmagyi GM, Gresty MA, Gibson WP (1979) Ocular tilt reaction with peripheral vestibular lesion. Ann Neurol 6:80–83.  https://doi.org/10.1002/ana.410060122 CrossRefGoogle Scholar
  37. Halmagyi GM, Curthoys IS, Brandt T, Dieterich M (1991) Ocular tilt reaction: clinical sign of vestibular lesion. Acta Otolaryngol Suppl 481:47–50CrossRefGoogle Scholar
  38. Hasuike K, Sekitani T, Imate Y (1995) Enhanced MRI in patients with vestibular neuronitis. Acta Otolaryngol Suppl 519:272–274CrossRefGoogle Scholar
  39. Hotson JR, Baloh RW (1998) Acute vestibular syndrome. N Engl J Med 339:680–685.  https://doi.org/10.1056/NEJM199809033391007 CrossRefGoogle Scholar
  40. Huwe JA, Logan GJ, Williams B, Rowe MH, Peterson EH (2015) Utricular afferents: morphology of peripheral terminals. J Neurophysiol 113:2420–2433.  https://doi.org/10.1152/jn.00481.2014 CrossRefGoogle Scholar
  41. Karlberg M, Annertz M, Magnusson M (2004) Acute vestibular neuritis visualized by 3-T magnetic resonance imaging with high-dose gadolinium. Arch Otolaryngol Head Neck Surg 130:229–232.  https://doi.org/10.1001/archotol.130.2.229 CrossRefGoogle Scholar
  42. Kattah JC, Talkad AV, Wang DZ, Hsieh YH, Newman-Toker DE (2009) HINTS to diagnose stroke in the acute vestibular syndrome: three-step bedside oculomotor examination more sensitive than early MRI diffusion-weighted imaging. Stroke 40:3504–3510.  https://doi.org/10.1161/STROKEAHA.109.551234 CrossRefGoogle Scholar
  43. Kheradmand A, Winnick A (2017) Perception of upright: multisensory convergence and the role of temporo-parietal cortex. Front Neurol 8:552.  https://doi.org/10.3389/fneur.2017.00552 CrossRefGoogle Scholar
  44. Kim HA, Hong JH, Lee H et al (2008) Otolith dysfunction in vestibular neuritis: recovery pattern and a predictor of symptom recovery. Neurology 70:449–453.  https://doi.org/10.1212/01.wnl.0000297554.21221.a0 CrossRefGoogle Scholar
  45. Kim SH, Kim JS (2018) Effects of head position on perception of gravity in vestibular neuritis and lateral medullary infarction. Front Neurol 9:60.  https://doi.org/10.3389/fneur.2018.00060 CrossRefGoogle Scholar
  46. Lee WS, Suarez C, Honrubia V, Gomez J (1990) Morphological aspects of the human vestibular nerve. Laryngoscope 100:756–764.  https://doi.org/10.1288/00005537-199007000-00012 Google Scholar
  47. Leigh RJ, Zee DS (2015) The neurology of eye movements. Oxford University Press, Oxford, New YorkCrossRefGoogle Scholar
  48. Magliulo G, Gagliardi S, Ciniglio Appiani M, Iannella G, Re M (2014) Vestibular neurolabyrinthitis: a follow-up study with cervical and ocular vestibular evoked myogenic potentials and the video head impulse test. Ann Otol Rhinol Laryngol 123:162–173.  https://doi.org/10.1177/0003489414522974 CrossRefGoogle Scholar
  49. Manzari L, Tedesco A, Burgess AM, Curthoys IS (2010) Ocular vestibular-evoked myogenic potentials to bone-conducted vibration in superior vestibular neuritis show utricular function. Otolaryngol Head Neck Surg 143:274–280.  https://doi.org/10.1016/j.otohns.2010.03.020 CrossRefGoogle Scholar
  50. Mardirossian V, Karmali F, Merfeld D (2014) Thresholds for human perception of roll tilt motion: patterns of variability based on visual, vestibular, and mixed cues. Otol Neurotol 35:857–860.  https://doi.org/10.1097/MAO.0000000000000346 CrossRefGoogle Scholar
  51. Morgenstein KM, Seung HI (1971) Vestibular neuronitis. Laryngoscope 81:131–139.  https://doi.org/10.1288/00005537-197101000-00012 CrossRefGoogle Scholar
  52. Ogawa Y, Otsuka K, Shimizu S, Inagaki T, Kondo T, Suzuki M (2012) Subjective visual vertical perception in patients with vestibular neuritis and sudden sensorineural hearing loss. J Vestib Res 22:205–211.  https://doi.org/10.3233/VES-2012-0447 Google Scholar
  53. Poljac E, Lankheet MJ, van den Berg AV (2005) Perceptual compensation for eye torsion. Vis Res 45:485–496.  https://doi.org/10.1016/j.visres.2004.09.009 CrossRefGoogle Scholar
  54. Richard C, Linthicum FH Jr (2012) Vestibular neuritis: the vertigo disappears, the histological traces remain. Otol Neurotol 33:e59–60.  https://doi.org/10.1097/MAO.0b013e31824b7730 CrossRefGoogle Scholar
  55. Si X, Zakir MM, Dickman JD (2003) Afferent innervation of the utricular macula in pigeons. J Neurophysiol 89:1660–1677.  https://doi.org/10.1152/jn.00690.2002 CrossRefGoogle Scholar
  56. Stewart CM, Mustari MJ, Perachio AA (2005) Visual-vestibular interactions during vestibular compensation: role of the pretectal not in horizontal VOR recovery after hemilabyrinthectomy in rhesus monkey. J Neurophysiol 94:2653–2666.  https://doi.org/10.1152/jn.00739.2004 CrossRefGoogle Scholar
  57. Strupp M, Jager L, Muller-Lisse U, Arbusow V, Reiser M, Brandt T (1998) High resolution Gd-DTPA MR imaging of the inner ear in 60 patients with idiopathic vestibular neuritis: no evidence for contrast enhancement of the labyrinth or vestibular nerve. J Vestib Res 8:427–433CrossRefGoogle Scholar
  58. Takai Y, Murofushi T, Ushio M, Iwasaki S (2006) Recovery of subjective visual horizontal after unilateral vestibular deafferentation by intratympanic instillation of gentamicin. J Vestib Res 16:69–73Google Scholar
  59. Taylor RL, McGarvie LA, Reid N, Young AS, Halmagyi GM, Welgampola MS (2016) Vestibular neuritis affects both superior and inferior vestibular nerves. Neurology 87:1704–1712.  https://doi.org/10.1212/WNL.0000000000003223 CrossRefGoogle Scholar
  60. Tribukait A, Bergenius J, Brantberg K (1998) Subjective visual horizontal during follow-up after unilateral vestibular deafferentation with gentamicin. Acta Otolaryngol 118:479–487CrossRefGoogle Scholar
  61. Vibert D, Hausler R, Safran AB, Koerner F (1996) Diplopia from skew deviation in unilateral peripheral vestibular lesions. Acta Otolaryngol 116:170–176CrossRefGoogle Scholar
  62. Vibert D, Hausler R, Safran AB (1999) Subjective visual vertical in peripheral unilateral vestibular diseases. J Vestib Res 9:145–152Google Scholar
  63. Voit M (1907) Zur Frage der Verästelung des Nervus Acusticus bei den Sängetieren. Anatomischer Anzeiger 31:635–640Google Scholar
  64. von Baumgarten RJ, Thumler R (1979) A model for vestibular function in altered gravitational states. Life Sci Space Res 17:161–170CrossRefGoogle Scholar
  65. Ward BK, Otero-Millan J, Jareonsettasin P, Schubert MC, Roberts DC, Zee DS (2017) Magnetic vestibular stimulation (MVS) as a technique for understanding the normal and diseased labyrinth. Front Neurol 8:122.  https://doi.org/10.3389/fneur.2017.00122 Google Scholar
  66. Weber KP, Rosengren SM (2015) Clinical utility of ocular vestibular-evoked myogenic potentials (oVEMPs). Curr Neurol Neurosci Rep 15:22.  https://doi.org/10.1007/s11910-015-0548-y CrossRefGoogle Scholar
  67. Yakushin SB, Reisine H, Buttner-Ennever J, Raphan T, Cohen B (2000) Functions of the nucleus of the optic tract (NOT). I. Adaptation of the gain of the horizontal vestibulo-ocular reflex. Exp Brain Res 131:416–432.  https://doi.org/10.1007/s002219900303 CrossRefGoogle Scholar
  68. Yoshino M, Kin T, Ito A et al (2015) Diffusion tensor tractography of normal facial and vestibulocochlear nerves. Int J Comput Assist Radiol Surg 10:383–392.  https://doi.org/10.1007/s11548-014-1129-2 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Ken and Ruth Davee Department of NeurologyNorthwestern University Feinberg School of MedicineChicagoUSA
  2. 2.Chicago Dizziness and HearingChicagoUSA

Personalised recommendations