Experimental Brain Research

, Volume 237, Issue 1, pp 29–36 | Cite as

Effect of the selective 5-HT2A receptor antagonist EMD-281,014 on l-DOPA-induced abnormal involuntary movements in the 6-OHDA-lesioned rat

  • Imane Frouni
  • Cynthia Kwan
  • Dominique Bédard
  • Sébastien Belliveau
  • Élodie Bourgeois-Cayer
  • Fleur Gaudette
  • Francis Beaudry
  • Adjia Hamadjida
  • Philippe HuotEmail author
Research Article


l-3,4-Dihydroxyphenylalanine (l-DOPA) is the most effective therapy for motor symptoms of Parkinson’s disease (PD); however, with repeated administration, as many as 94% of PD patients develop complications such as l-DOPA-induced dyskinesia. We previously demonstrated that EMD-281,014, a highly selective serotonin 2A (5-HT2A) receptor antagonist, reduces the severity of dyskinesia in the parkinsonian marmoset, without interfering with l-DOPA anti-parkinsonian benefit. Here, we assessed the effects of EMD-281,014 on l-DOPA-induced abnormal involuntary movements (AIMs) in the 6-hydroxydopamine (6-OHDA)-lesioned rat. We first determined the pharmacokinetic profile of EMD-281,014, to administer doses leading to clinically relevant plasma levels in the behavioural experiments. Dyskinetic 6-OHDA-lesioned rats were then administered EMD-281,014 (0.01, 0.03 and 0.1 mg/kg) or vehicle in combination with l-DOPA and AIMs severity was evaluated. We also assessed the effect of EMD-281,014 on l-DOPA anti-parkinsonian action with the cylinder test. We found that the addition of EMD-281,014 (0.01, 0.03 and 0.1 mg/kg) to l-DOPA did not reduce AIMs severity (P > 0.05), when compared to vehicle. EMD-281,014 did not compromise l-DOPA anti-parkinsonian action. Our results suggest that the highly selective 5-HT2A receptor antagonist EMD-281,014 is well-tolerated by parkinsonian rats, but does not attenuate l-DOPA-induced AIMs. Our results highlight differences between rodent and primate models of PD when it comes to determining the anti-dyskinetic action of 5-HT2A receptor antagonists.


Parkinson’s disease l-DOPA Dyskinesia Pharmacokinetics EMD-281,014 5-HT2A receptor 



PH has research support from Parkinson Canada, Fonds de Recherche Québec—Santé, the Natural Sciences and Engineering Research Council of Canada and the Weston Brain Institute.

Author contributions

(1) Research project: (A) conception, (B) organisation, (C) execution; (2) Manuscript: (A) writing of the first draft, (B) review and critique. Frouni: 1C, 2A, 2B; Kwan: 1C, 2A, 2B; Bourgeois-Cayer: 1C; Belliveau: 1C; Bédard:1C; Gaudette:1C, 2B; Beaudry: 1C, 2B; Hamadjida: 1B; 2A; 2B; Huot: 1A, 1B, 2B.

Compliance with ethical standards

Conflict of interest

There are no conflicts of interest. PH has received speaker and travel fees from UCB.


  1. Arai R, Karasawa N, Geffard M, Nagatsu T, Nagatsu I (1994) Immunohistochemical evidence that central serotonin neurons produce dopamine from exogenousl-DOPA in the rat, with reference to the involvement of aromaticl-amino acid decarboxylase. Brain Res 667:295–299CrossRefGoogle Scholar
  2. Arai R, Karasawa N, Geffard M, Nagatsu I (1995) l-DOPA is converted to dopamine in serotonergic fibers of the striatum of the rat: a double-labeling immunofluorescence study. Neurosci Lett 195:195–198CrossRefGoogle Scholar
  3. Bartoszyk GD, van Amsterdam C, Bottcher H, Seyfried CA (2003) EMD 281014, a new selective serotonin 5-HT2A receptor antagonist. Eur J Pharmacol 473:229–230CrossRefGoogle Scholar
  4. Bishop C, Krolewski DM, Eskow KL, Barnum CJ, Dupre KB, Deak T, Walker PD (2009) Contribution of the striatum to the effects of 5-HT1A receptor stimulation in l-DOPA-treated hemiparkinsonian rats. J Neurosci Res 87:1645–1658. CrossRefGoogle Scholar
  5. Bland JM, Altman DG (1996) Transforming data. Bmj 312:770CrossRefGoogle Scholar
  6. Bymaster FP, Calligaro DO, Falcone JF et al (1996) Radioreceptor binding profile of the atypical antipsychotic olanzapine. Neuropsychopharmacology 14:87–96. CrossRefGoogle Scholar
  7. Carta M, Carlsson T, Kirik D, Björklund A (2007) Dopamine released from 5-HT terminals is the cause of l-DOPA-induced dyskinesia in parkinsonian rats. Brain 130:1819–1833CrossRefGoogle Scholar
  8. Cenci MA, Lundblad M (2007) Ratings of l-DOPA-induced dyskinesia in the unilateral 6-OHDA lesion model of Parkinson’s disease in rats and mice. Curr Protoc Neurosci 41:1–23Google Scholar
  9. Cicchetti F, Prensa L, Wu Y, Parent A (2000) Chemical anatomy of striatal interneurons in normal individuals and in patients with Huntington’s disease. Brain Res Brain Res Rev 34:80–101CrossRefGoogle Scholar
  10. Cilia R, Akpalu A, Sarfo FS et al (2014) The modern pre-levodopa era of Parkinson’s disease: insights into motor complications from sub-Saharan Africa. Brain 137:2731–2742. CrossRefGoogle Scholar
  11. Connolly BS, Lang AE (2014) Pharmacological treatment of Parkinson disease: a review. JAMA 311:1670–1683CrossRefGoogle Scholar
  12. Durif F, Debilly B, Galitzky M et al (2004) Clozapine improves dyskinesias in Parkinson disease: a double-blind, placebo-controlled study. Neurology 62:381–388CrossRefGoogle Scholar
  13. Gaudette F, Hamadjida A, Bédard D, Nuara SG, Beaudry F, Huot P (2017) Development and validation of a high-performance liquid chromatography–tandem mass spectrometry method to quantify LY-354,740 in rat and marmoset plasma. J Chromatogr B 1061–1062:392–398. CrossRefGoogle Scholar
  14. Gaudette F, Hamadjida A, Bedard D et al (2018) Development of a selective and sensitive high-performance liquid chromatography–tandem mass spectrometry assay to support pharmacokinetic studies of LY-487,379 in rat and marmoset. J Chromatogr B Analyt Technol Biomed Life Sci 1093–1094:1–7. CrossRefGoogle Scholar
  15. Goetz CG, Laska E, Hicking C et al (2008) Placebo influences on dyskinesia in Parkinson’s disease. Mov Disord 23:700–707. CrossRefGoogle Scholar
  16. Hamadjida A, Nuara SG, Bedard D, Gaudette F, Beaudry F, Gourdon JC, Huot P (2018) The highly selective 5-HT2A antagonist EMD-281,014 reduces dyskinesia and psychosis in the l-DOPA-treated parkinsonian marmoset. Neuropharmacology 139:61–67. CrossRefGoogle Scholar
  17. Hely MA, Morris JG, Reid WG, Trafficante R (2005) Sydney multicenter study of Parkinson’s disease: non-l-DOPA-responsive problems dominate at 15 years. Mov Disord 20:190–199. CrossRefGoogle Scholar
  18. Herth MM, Kramer V, Piel M, Palner M, Riss PJ, Knudsen GM, Rosch F (2009) Synthesis and in vitro affinities of various MDL 100907 derivatives as potential 18F-radioligands for 5-HT2A receptor imaging with PET. Bioorg Med Chem 17:2989–3002. CrossRefGoogle Scholar
  19. Howell DC (2006) Statistical methods for psychology, 6th edn. Wadsworth Publishing, BelmontGoogle Scholar
  20. Huot P, Johnston TH, Lewis KD et al (2011) Characterization of 3,4-methylenedioxymethamphetamine (MDMA) enantiomers in vitro and in the MPTP-lesioned primate: R-MDMA reduces severity of dyskinesia, whereas S-MDMA extends duration of ON-time. J Neurosci 31:7190–7198. CrossRefGoogle Scholar
  21. Huot P, Johnston TH, Winkelmolen L, Fox SH, Brotchie JM (2012a) 5-HT2A receptor levels increase in MPTP-lesioned macaques treated chronically with l-DOPA. Neurobiol Aging 33:194.e195–194.e115Google Scholar
  22. Huot P, Johnston TH, Winkelmolen L, Fox SH, Brotchie JM (2012b) 5-HT2A receptor levels increase in MPTP-lesioned macaques treated chronically with l-DOPA. Neurobiol Aging 33:194 e195–194 e115. Google Scholar
  23. Huot P, Johnston TH, Koprich JB, Espinosa MC, Reyes MG, Fox SH, Brotchie JM (2015) l-745,870 reduces the expression of abnormal involuntary movements in the 6-OHDA-lesioned rat. Behav Pharmacol 26:101–108. CrossRefGoogle Scholar
  24. Iravani MM, Tayarani-Binazir K, Chu WB, Jackson MJ, Jenner P (2006) In 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-treated primates, the selective 5-hydroxytryptamine 1a agonist (R)-(+)-8-OHDPAT inhibits levodopa-induced dyskinesia but only with increased motor disability. J Pharmacol Exp Ther 319:1225–1234. CrossRefGoogle Scholar
  25. Jenner P (2008) Molecular mechanisms of l-DOPA-induced dyskinesia. Nat Rev Neurosci 9:665–677. CrossRefGoogle Scholar
  26. Leysen JE, Gommeren W, Van Gompel P, Wynants J, Janssen PF, Laduron PM (1985) Receptor-binding properties in vitro and in vivo of ritanserin: a very potent and long acting serotonin-S2 antagonist. Mol Pharmacol 27:600–611Google Scholar
  27. Li Y, Huang XF, Deng C et al (2010) Alterations in 5-HT2A receptor binding in various brain regions among 6-hydroxydopamine-induced Parkinsonian rats. Synapse 64:224–230. CrossRefGoogle Scholar
  28. Maertens de Noordhout A, Delwaide PJ (1986) Open pilot trial of ritanserin in parkinsonism. Clin Neuropharmacol 9:480–484CrossRefGoogle Scholar
  29. Mamo D, Sedman E, Tillner J, Sellers EM, Romach MK, Kapur S (2004) EMD 281014, a specific and potent 5HT2 antagonist in humans: a dose-finding PET study. Psychopharmacology 175:382–388. CrossRefGoogle Scholar
  30. Meco G, Marini S, Linfante I, Modarelli F, Agnoli A (1988) Controlled single-blind crossover study of ritanserin and placebo in l-DOPA-induced dyskinesias in Parkinson’s disease. Curr Ther Res 43:262–270Google Scholar
  31. Navailles S, Bioulac B, Gross C, De Deurwaerdère P (2010) Serotonergic neurons mediate ectopic release of dopamine induced by l-DOPA in a rat model of Parkinson’s disease. Neurobiol Dis 38:136–143CrossRefGoogle Scholar
  32. Nordstrom AL, Farde L, Nyberg S, Karlsson P, Halldin C, Sedvall G (1995) D1, D2, and 5-HT2 receptor occupancy in relation to clozapine serum concentration: a PET study of schizophrenic patients. Am J Psychiatry 152:1444–1449CrossRefGoogle Scholar
  33. Numan S, Lundgren KH, Wright DE, Herman JP, Seroogy KB (1995) Increased expression of 5HT2 receptor mRNA in rat striatum following 6-OHDA lesions of the adult nigrostriatal pathway. Brain Res Mol Brain Res 29:391–396CrossRefGoogle Scholar
  34. Ohlin KE, Francardo V, Lindgren HS et al (2011) Vascular endothelial growth factor is upregulated by l-DOPA in the parkinsonian brain: implications for the development of dyskinesia. Brain 134:2339–2357. CrossRefGoogle Scholar
  35. Paxinos G, Watson C (2017) The rat brain in stereotaxic coordinates: compact. Academic Press, New YorkGoogle Scholar
  36. PD Med Collaborative Group (2014) Long-term effectiveness of dopamine agonists and monoamine oxidase B inhibitors compared with levodopa as initial treatment for Parkinson’s disease (PD MED): a large, open-label, pragmatic randomised trial. Lancet 384:1196–1205. CrossRefGoogle Scholar
  37. Rascol O, Brooks DJ, Korczyn AD, De Deyn PP, Clarke CE, Lang AE (2000) A five-year study of the incidence of dyskinesia in patients with early Parkinson’s disease who were treated with ropinirole or levodopa. N Engl J Med 342:1484–1491CrossRefGoogle Scholar
  38. Riahi G, Morissette M, Parent M, Di Paolo T (2011) Brain 5-HT(2A) receptors in MPTP monkeys and levodopa-induced dyskinesias. Eur J Neurosci 33:1823–1831. CrossRefGoogle Scholar
  39. Rowland M, Tozer TN (1995) Clinical pharmacokinetics: concepts and application. Lippincott Williams and Wilkins., PhiladelphiaGoogle Scholar
  40. Schallert T, Fleming SM, Leasure JL, Tillerson JL, Bland ST (2000) CNS plasticity and assessment of forelimb sensorimotor outcome in unilateral rat models of stroke, cortical ablation, parkinsonism and spinal cord injury. Neuropharmacology 39:777–787CrossRefGoogle Scholar
  41. Taylor JL, Bishop C, Ullrich T, Rice KC, Walker PD (2006) Serotonin 2A receptor antagonist treatment reduces dopamine D1 receptor-mediated rotational behavior but not l-DOPA-induced abnormal involuntary movements in the unilateral dopamine-depleted rat. Neuropharmacology 50:761–768. CrossRefGoogle Scholar
  42. Ungerstedt U (1968) 6-Hydroxy-dopamine induced degeneration of central monoamine neurons. Eur J Pharmacol 5:107–110CrossRefGoogle Scholar
  43. Vanover KE, Betz AJ, Weber SM et al (2008) A 5-HT2A receptor inverse agonist, ACP-103, reduces tremor in a rat model and levodopa-induced dyskinesias in a monkey model. Pharmacol Biochem Behav 90:540–544. CrossRefGoogle Scholar
  44. Zhang X, Andren PE, Svenningsson P (2007) Changes on 5-HT2 receptor mRNAs in striatum and subthalamic nucleus in Parkinson’s disease model. Physiol Behav 92:29–33. CrossRefGoogle Scholar
  45. Zhang Y, Huo M, Zhou J, Xie S (2010) PKSolver: an add-in program for pharmacokinetic and pharmacodynamic data analysis in Microsoft Excel. Comput Methods Progr Biomed 99:306–314. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Neurodegenerative Disease GroupMontreal Neurological InstituteMontrealCanada
  2. 2.Département de pharmacologie et physiologieUniversité de MontréalMontrealCanada
  3. 3.Integrated Program in NeuroscienceMcGill UniversityMontrealCanada
  4. 4.Plateforme de PharmacocinétiqueCentre de Recherche du Centre Hospitalier de l’Université de MontréalMontrealCanada
  5. 5.Groupe de Recherche en Pharmacologie Animale du Québec, Département de Biomédecine Vétérinaire, Faculté de Médecine VétérinaireUniversité de MontréalSaint-HyacintheCanada
  6. 6.Department of NeuroscienceMcGill UniversityMontrealCanada
  7. 7.Division of NeurologyMcGill University Health CentreMontrealCanada

Personalised recommendations