Experimental Brain Research

, Volume 236, Issue 12, pp 3417–3426 | Cite as

Correlations between executive functions and adaptation to incrementally increasing sensorimotor discordances

  • Gerd SchmitzEmail author
  • Mirco Dierking
  • Anthea Guenther
Research Article


A previous study reported that movement directions adapt much better to 60° target displacements (double steps) when target displacements are introduced incrementally and not abruptly. The present study tested whether incremental adaptation to 60° discordances can be explained by specific cognitive abilities. The results showed that an increase of discordance size during adaptation enhanced reaction times. Furthermore, the individual performance in neuropsychological tests measuring sustained attention, figural fluency and perseveration predicted the rate of adaptation at different discordance sizes. These results are discussed with reference to recent models on directional selectivity and modularity during visually guided reaching.


Sensorimotor adaptation Executive functions Motor control Modularity Directional selectivity 


Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures were applied in accordance with the ethical standards of the institutional research and ethics committee and with the 1964 Helsinki declaration and its later amendments. Informed consent was obtained from all individual participants included in the study.


  1. Anderson V, Jacobs R, Anderson PJ (2008) Executive functions and the frontal lobes: a lifespan perspective. Neuropsychology, neurology, and cognition. Taylor & Francis, PhiladelphiaGoogle Scholar
  2. Anguera JA, Bernard JA, Jaeggi SM, Buschkuehl M, Benson BL, Jennett S, Humfleet J, Reuter-Lorenz PA, Jonides J, Seidler RD (2012) The effects of working memory resource depletion and training on sensorimotor adaptation. Behav Brain Res 228(1):107–115. CrossRefPubMedGoogle Scholar
  3. Bedard P, Song J-H (2013) Attention modulates generalization of visuomotor adaptation. J Vis 13(12):12. CrossRefPubMedGoogle Scholar
  4. Bedford FL (1993) Perceptual and cognitive spatial learning. J Exp Psychol Hum Percept Perform 19:517–530. CrossRefPubMedGoogle Scholar
  5. Bock O (2005) Components of sensorimotor adaptation in young and elderly subjects. Exp Brain Res 160(2):259–263. CrossRefPubMedGoogle Scholar
  6. Bock O (2013) Basic principles of sensorimotor adaptation to different distortions with different effectors and movement types: a review and synthesis of behavioral findings. Front Hum Neurosci 7:81. CrossRefPubMedPubMedCentralGoogle Scholar
  7. Bock O, Girgenrath M (2006) Relationship between sensorimotor adaptation and cognitive functions in younger and older subjects. Exp Brain Res 169(3):400–406. CrossRefPubMedGoogle Scholar
  8. Bock O, Schmitz G (2011) Adaptation to rotated visual feedback depends on the number and spread of target directions. Exp Brain Res 209(3):409–413. CrossRefPubMedGoogle Scholar
  9. Bock O, Schmitz G, Grigorova V (2008) Transfer of adaptation between ocular saccades and arm movements. Hum Mov Sci 27(3):383–395. CrossRefPubMedGoogle Scholar
  10. Bock O, Grigorova V, Ilieva-Staneva M (2017) Adaptation of reactive saccades is influenced by unconscious priming of the attention focus. J Mot Behav 49(5):477–481. CrossRefPubMedGoogle Scholar
  11. Bortz J (2005) Statistik für Human- und Sozialwissenschaftler (Statistics for human- and social-scientists). Springer, New YorkGoogle Scholar
  12. Christou AI, Miall RC, McNab F, Galea JM (2016) Individual differences in explicit and implicit visuomotor learning and working memory capacity. Sci Rep 6:36633. CrossRefPubMedPubMedCentralGoogle Scholar
  13. Cotti J, Guillaume A, Alahyane N, Pelisson D, Vercher J-L (2007) Adaptation of voluntary saccades, but not of reactive saccades, transfers to hand pointing movements. J Neurophysiol 98:602–612. CrossRefPubMedGoogle Scholar
  14. Deubel H (1987) Aadaptivity of gain and direction in oblique saccades. In: O’Regan JK, Levy-Schoen A (eds) Eye movements from physiology to cognition. Elsevier, Amsterdam, pp 181–190CrossRefGoogle Scholar
  15. Eisenberg M, Shmuelof L, Vaadia E, Zohary E (2011) The representation of visual and motor aspects of reaching movements in the human motor cortex. J Neurosci 31(34):12377–12384. CrossRefPubMedGoogle Scholar
  16. Eversheim U, Bock O (2001) Evidence for processing stages in skill acquisition: a dual-task study. Learn Mem 8(4):183–189. CrossRefPubMedPubMedCentralGoogle Scholar
  17. Fernandez-Ruiz J, Wong W, Armstrong IT, Flanagan JR (2011) Relation between reaction time and reach errors during visuomotor adaptation. Behav Brain Res 219(1):8–14. CrossRefPubMedGoogle Scholar
  18. Ghahramani Z, Wolpert DM (1997) Modular decomposition in visuomotor learning. Nature 386(6623):392–395. CrossRefPubMedGoogle Scholar
  19. Grigorova V, Bock O, Borisova S (2013) Concurrent adaptation of reactive saccades and hand pointing movements to equal and to opposite changes of target direction. Exp Brain Res 226:63–71. CrossRefPubMedGoogle Scholar
  20. Haar S, Donchin O, Dinstein I (2015) Dissociating visual and motor directional selectivity using visuomotor adaptation. J Neurosci 35(17):6813–6821. CrossRefPubMedGoogle Scholar
  21. Haid TH, Martl C, Schubert F, Wenzl M, Kofler M, Saltuari L (2002) Der “HAMASCH 5 Punkt test”. erste Normierungsergebnisse. Zeitschrift für Neuropsychologie 13:233Google Scholar
  22. Hauser MD (1999) Perseveration, inhibition and the prefrontal cortex: a new look. Curr Opin Neurobiol 9(2):214–222CrossRefGoogle Scholar
  23. Huberdeau DM, Krakauer JW, Haith AM (2015) Dual-process decomposition in human sensorimotor adaptation. Curr Opin Neurobiol 33:71–77. CrossRefPubMedGoogle Scholar
  24. Imamizu H, Uno Y, Kawato M (1995) Internal representations of the motor apparatus: implications from generalization in visuomotor learning. J Exp Psychol Hum Percept Perform 21(5):1174–1198CrossRefGoogle Scholar
  25. Kagerer FA, Contreras-Vidal JL, Stelmach GE (1997) Adaptation to gradual as compared with sudden visuo-motor distortions. Exp Brain Res 115:557–561CrossRefGoogle Scholar
  26. Kessels RP, van Zandvoort MJ, Postma A, Kappelle LJ, Haan EH de (2000) The corsi block-tapping task: standardization and normative data. Appl Neuropsychol 7:252–258. CrossRefPubMedGoogle Scholar
  27. Kim S, Ogawa K, Lv J, Schweighofer N, Imamizu H, Ashe J (2015) Neural substrates related to motor memory with multiple timescales in sensorimotor adaptation. PLoS Biol 13(12):e1002312. CrossRefPubMedPubMedCentralGoogle Scholar
  28. Krakauer JW, Pine ZM, Ghilardi MF, Ghez C (2000) Learning of visuomotor transformations for vectorial planning of reaching trajectories. J Neurosci 20(23):8916–8924CrossRefGoogle Scholar
  29. Lee J-Y, Schweighofer N (2009) Dual adaptation supports a parallel architecture of motor memory. J Neurosci 29:10396–10404. CrossRefPubMedPubMedCentralGoogle Scholar
  30. Mahan MY, Georgopoulos AP (2013) Motor directional tuning across brain areas: directional resonance and the role of inhibition for directional accuracy. Front Neural Circuits 7:92. CrossRefPubMedPubMedCentralGoogle Scholar
  31. Mazzoni P, Krakauer JW (2006) An implicit plan overrides an explicit strategy during visuomotor adaptation. J Neurosci 26(14):3642–3645. CrossRefPubMedGoogle Scholar
  32. McDougle SD, Taylor JA (2018) Dissociable roles for working memory in sensorimotor learning. bioRxiv. CrossRefGoogle Scholar
  33. McDougle SD, Bond KM, Taylor JA (2015) Explicit and implicit processes constitute the fast and slow processes of sensorimotor learning. J Neurosci 35(26):9568–9579. CrossRefPubMedPubMedCentralGoogle Scholar
  34. McLaughlin SC (1967) Parametric adjustment in saccadic eye movements. Percept Psychophys 2:359–362CrossRefGoogle Scholar
  35. McNay EC, Willingham DB (1998) Deficit in learning of a motor skill requiring strategy, but not of perceptuomotor recalibration, with aging. Learn Mem 4(5):411–420CrossRefGoogle Scholar
  36. Michel C, Pisella L, Prablanc C, Rode G, Rossetti Y (2007) Enhancing visuomotor adaptation by reducing error signals: single-step (aware) versus multiple-step (unaware) exposure to wedge prisms. J Cogn Neurosci 19:341–350. CrossRefPubMedGoogle Scholar
  37. Moosbrugger H, Oehlschlaegel J, Steinwascher M (2011) Frankfurter Aufmerksamkeits-Inventar 2 (Frankfurter Attentional Inventory 2). Verlag Hans Huber, BernGoogle Scholar
  38. Neville K-M, Cressman EK (2018) The influence of awareness on explicit and implicit contributions to visuomotor adaptation over time. Exp Brain Res. CrossRefPubMedGoogle Scholar
  39. Noto CT, Watanabe S, Fuchs AF (1999) Characteristics of simian adaptation fields produced by behavioral changes in saccade size and direction. J Neurophysiol 81:2798–2813. CrossRefPubMedGoogle Scholar
  40. Redding GM, Wallace B (1996) Adaptive spatial alignment and strategic perceptual-motor control. J Exp Psychol Hum Percept Perform 22(2):379–394CrossRefGoogle Scholar
  41. Regard M, Strauss E, Knapp P (1982) Children’s production on verbal and non-verbal fluency tasks. Percept Mot Skills 55(3 Pt 1):839–844. CrossRefPubMedGoogle Scholar
  42. Reitan RM (1959) Manual for administration of neuropsychological test batteries for adults and children. Reitan Neuropsychological Laboratories, TucsonGoogle Scholar
  43. Saunders JA, Knill DC (2003) Humans use continuous visual feedback from the hand to control fast reaching movements. Exp Brain Res 152(3):341–352. CrossRefPubMedGoogle Scholar
  44. Schmitz G (2014) Visuo- und audiomotorische Adaptation. Hofmann-Verlag, SchorndorfGoogle Scholar
  45. Schmitz G (2016) Interference between adaptation to double steps and adaptation to rotated feedback in spite of differences in directional selectivity. Exp Brain Res 234(6):1491–1504. CrossRefPubMedGoogle Scholar
  46. Schmitz G, Bock O, Grigorova V, Ilieva M (2010) Adaptation of eye and hand movements to target displacements of different size. Exp Brain Res 203(2):479–484. CrossRefPubMedPubMedCentralGoogle Scholar
  47. Schmitz G, Bock O, Grigorova V, Borisova S (2012) Adaptation of hand movements to double-step targets and to distorted visual feedback: evidence for shared mechanisms. Hum Mov Sci 31(4):791–800. CrossRefPubMedGoogle Scholar
  48. Seidler RD, Carson RG (2017) Sensorimotor learning: neurocognitive mechanisms and individual differences. J Neuroeng Rehabil 14:74. CrossRefPubMedPubMedCentralGoogle Scholar
  49. Seidler RD, Bo J, Anguera JA (2012) Neurocognitive contributions to motor skill learning: the role of working memory. J Mot Behav 44(6):445–453. CrossRefPubMedPubMedCentralGoogle Scholar
  50. Shadmehr R, Smith MA, Krakauer JW (2010) Error correction, sensory prediction, and adaptation in motor control. Annu Rev Neurosci 33:89–108. CrossRefPubMedGoogle Scholar
  51. Simon A, Bock O (2015) Does visuomotor adaptation proceed in stages? An examination of the learning model by chein and schneider (2012). J Mot Behav 47(6):503–508. CrossRefPubMedGoogle Scholar
  52. Simon A, Bock O (2016) Influence of divergent and convergent thinking on visuomotor adaptation in young and older adults. Hum Mov Sci 46:23–29. CrossRefPubMedGoogle Scholar
  53. Smith MA, Ghazizadeh A, Shadmehr R (2006) Interacting adaptive processes with different timescales underlie short-term motor learning. PLoS Biol 4(6):e179. CrossRefPubMedPubMedCentralGoogle Scholar
  54. Spreen O, Strauss E (1998) A compendium of neuropsychological tests: administration, norms and commentary, 2nd edn. Oxford University Press, New YorkGoogle Scholar
  55. Tanaka H, Sejnowski TJ, Krakauer JW (2009) Adaptation to visuomotor rotation through interaction between posterior parietal and motor cortical areas. J Neurophysiol 102:2921–2932. CrossRefPubMedPubMedCentralGoogle Scholar
  56. Taylor JA, Thoroughman KA (2007) Divided attention impairs human motor adaptation but not feedback control. J Neurophysiol 98(1):317–326. CrossRefPubMedGoogle Scholar
  57. Taylor JA, Krakauer JW, Ivry RB (2014) Explicit and implicit contributions to learning in a sensorimotor adaptation task. J Neurosci 34:3023–3032. CrossRefPubMedPubMedCentralGoogle Scholar
  58. Tucha L, Aschenbrenner S, Koerts J, Lange KW, Erausquin GA de (2012) The five-point test: reliability, validity and normative data for children and adults. PLoS One 7(9):e46080. CrossRefPubMedPubMedCentralGoogle Scholar
  59. Weiner MJ, Hallett M, Funkenstein HH (1983) Adaptation to lateral displacement of vision in patients with lesions of the central nervous system. Neurology 33(6):766–772CrossRefGoogle Scholar
  60. Welch RB (1978) Perceptual modification: adapting to altered sensory environments. Academic Press Series in Cognition and Perception. Academic Press, CambridgeGoogle Scholar
  61. Wolpert DM, Kawato M (1998) Multiple paired forward and inverse models for motor control. Neural Netw 11(7–8):1317–1329CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of Sports ScienceLeibniz University HannoverHannoverGermany

Personalised recommendations