Experimental Brain Research

, Volume 236, Issue 12, pp 3223–3237 | Cite as

The neural correlates of flow experience explored with transcranial direct current stimulation

  • Martin Ulrich
  • Johannes Niemann
  • Markus Boland
  • Thomas Kammer
  • Filip Niemann
  • Georg GrönEmail author
Research Article


The experience of flow ensues when humans engage in a demanding task while task demands are balanced with the individual’s level of skill or ability. Here, we further tested the hypothesis that the medial prefrontal cortex (MPFC) plays a causal role in mediating flow experience using transcranial direct current stimulation (tDCS) to interfere with MPFC’s deactivation evoked by a flow paradigm and measured by magnetic resonance (MR)-based perfusion imaging. In a balanced, within-subjects repeated measure design, three treatments of tDCS (sham, anodal, cathodal) were applied in a sample of 22 healthy male participants. tDCS-modulatory effects on flow-specific regional cerebral blood flow (rCBF) and subjective flow experience significantly depended on participants’ baseline level of flow experience during sham tDCS. Those participants with lower-flow experience during sham tDCS (LF) benefitted from tDCS, particularly from the anodal polarity, whereas both active treatments did not substantially affect subjects with relatively higher baseline flow experience (HF). Functionally, in LF subjects, relative deactivation of the right amygdala got more pronounced under anodal and cathodal tDCS, and changed inconsistently in HF subjects. Inter-individual regression analyses of rCBF data suggested that involvement of the subgenual anterior cingulate cortex appears crucial for affecting the response pattern in the right amygdala and can be modulated by tDCS. Present data support the notion that valuable insights into the neural mechanism of flow can be obtained using tDCS. However, a clearer understanding of tDCS’ baseline dependency in terms of individual variations in brain connectivity states appears a necessary prerequisite to exploit this technique further.


Flow experience tDCS Perfusion imaging MPFC Amygdala sgACC 



We thank Sabrina Lorenz and Kathrin Brändle for technical assistance, and Bärbel Herrnberger for her helpful contribution to analysis of perfusion imaging data.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

221_2018_5378_MOESM1_ESM.pdf (147 kb)
Supplementary material 1 (PDF 146 KB)


  1. Abler B, Kumpfmüller D, Grön G, Walter M, Stingl J, Seeringer A (2013) Neural correlates of erotic stimulation under different levels of female sexual hormones. PLoS One 8:e54447CrossRefGoogle Scholar
  2. Adenzato M, Brambilla M, Manenti R, De Lucia L, Trojano L, Garofalo S, Enrici I, Cotelli M (2017) Gender differences in cognitive theory of mind revealed by transcranial direct current stimulation on medial prefrontal cortex. Sci Rep 7:41219CrossRefGoogle Scholar
  3. Alsop DC, Detre JA, Golay X, Günther M, Hendrikse J, Hernandez-Garcia L, Lu H, MacIntosh BJ, Parkes LM, Smits M, van Osch MJ, Wang DJ, Wong EC, Zaharchuk G (2015) Recommended implementation of arterial spin-labeled perfusion MRI for clinical applications: a consensus of the ISMRM perfusion study group and the European consortium for ASL in dementia. Magn Reson Med 73:102–116CrossRefGoogle Scholar
  4. Barth M, Breuer F, Koopmans PJ, Norris DG, Poser BA (2016) Simultaneous multislice (SMS) imaging techniques. Magn Reson Med 75:63–81CrossRefGoogle Scholar
  5. Benwell CS, Learmonth G, Miniussi C, Harvey M, Thut G (2015) Non-linear effects of transcranial direct current stimulation as a function of individual baseline performance: Evidence from biparietal tDCS influence on lateralized attention bias. Cortex 69:152–165CrossRefGoogle Scholar
  6. Bertossi E, Peccenini L, Solmi A, Avenanti A, Ciaramelli E (2017) Transcranial direct current stimulation of the medial prefrontal cortex dampens mind-wandering in men. Sci Rep 7:16962CrossRefGoogle Scholar
  7. Bikson M, Inoue M, Akiyama H, Deans JK, Fox JE, Miyakawa H, Jefferys JG (2004) Effects of uniform extracellular DC electric fields on excitability in rat hippocampal slices in vitro. J Physiol (Lond) 557:175–190CrossRefGoogle Scholar
  8. Boland M, Stirnberg R, Pracht ED, Kramme J, Viviani R, Stingl J, Stöcker T (2018) Accelerated 3D-GRASE imaging improves quantitative multiple post labeling delay arterial spin labeling. Magn Reson Med. CrossRefPubMedGoogle Scholar
  9. Brewer JA, Worhunsky PD, Gray JR, Tang YY, Weber J, Kober H (2011) Meditation experience is associated with differences in default mode network activity and connectivity. Proc Natl Acad Sci USA 108:20254–20259CrossRefGoogle Scholar
  10. Brückner S, Kammer T (2017) Both anodal and cathodal transcranial direct current stimulation improves semantic processing. Neuroscience 343:269–275CrossRefGoogle Scholar
  11. Civai C, Miniussi C, Rumiati RI (2014) Medial prefrontal cortex reacts to unfairness if this damages the self: a tDCS study. Soc Cogn Affect Neurosci. CrossRefPubMedPubMedCentralGoogle Scholar
  12. Creutzfeldt OD, Fromm GH, Kapp H (1962) Influence of transcortical d-c currents on cortical neuronal activity. Exp Neurol 5:436–452CrossRefGoogle Scholar
  13. Csikszentmihalyi M (1975) Beyond boredom and anxiety: experiencing flow in work and play. Jossey-Bass, San FranciscoGoogle Scholar
  14. D’Argembeau A, Ruby P, Collette F, Degueldre C, Balteau E, Luxen A, Maquet P, Salmon E (2007) Distinct regions of the medial prefrontal cortex are associated with self-referential processing and perspective taking. J Cogn Neurosci 19:935–944CrossRefGoogle Scholar
  15. Detre JA, Rao H, Wang DJ, Chen YF, Wang Z (2012) Applications of arterial spin labeled MRI in the brain. J Magn Reson Imaging 35:1026–1037CrossRefGoogle Scholar
  16. Dietrich T, Krings T, Neulen J, Willmes K, Erberich S, Thron A, Sturm W (2001) Effects of blood estrogen level on cortical activation patterns during cognitive activation as measured by functional MRI. Neuroimage 13:425–432CrossRefGoogle Scholar
  17. Donahue MJ, Jezzard P (2013) MR perfusion imaging in neuroscience. In: Barker PB, Golay X, Zaharchuk G (eds) Clinical perfusion MRI: techniques and applications. Cambridge University Press, Cambridge, pp 103–126CrossRefGoogle Scholar
  18. Eklund A, Nichols TE, Knutsson H (2016) Cluster failure: Why fMRI inferences for spatial extent have inflated false-positive rates. Proc Natl Acad Sci USA 113:7900–7905CrossRefGoogle Scholar
  19. Etkin A, Egner T, Kalisch R (2011) Emotional processing in anterior cingulate and medial prefrontal cortex. Trends Cogn Sci 15:85–93CrossRefGoogle Scholar
  20. Fan L, Li H, Zhuo J, Zhang Y, Wang J, Chen L, Yang Z, Chu C, Xie S, Laird AR, Fox PT, Eickhoff SB, Yu C, Jiang T (2016) The Human Brainnetome Atlas: a new brain atlas based on connectional architecture. Cereb Cortex 26:3508–3526CrossRefGoogle Scholar
  21. Fernández G, Weis S, Stoffel-Wagner B, Tendolkar I, Reuber M, Beyenburg S, Klaver P, Fell J, de Greiff A, Ruhlmann J, Reul J, Elger CE (2003) Menstrual cycle-dependent neural plasticity in the adult human brain is hormone, task, and region specific. J Neurosci 23:3790–3795CrossRefGoogle Scholar
  22. Fertonani A, Rosini S, Cotelli M, Rossini PM, Miniussi C (2010) Naming facilitation induced by transcranial direct current stimulation. Behav Brain Res 208:311–318CrossRefGoogle Scholar
  23. Furuya S, Klaus M, Nitsche MA, Paulus W, Altenmüller E (2014) Ceiling effects prevent further improvement of transcranial stimulation in skilled musicians. J Neurosci 34:13834–13839CrossRefGoogle Scholar
  24. Goldberg II, Harel M, Malach R (2006) When the brain loses its self: prefrontal inactivation during sensorimotor processing. Neuron 50:329–339CrossRefGoogle Scholar
  25. Gözenman F, Berryhill ME (2016) Working memory capacity differentially influences responses to tDCS and HD-tDCS in a retro-cue task. Neurosci Lett 629:105–109CrossRefGoogle Scholar
  26. Gusnard DA, Akbudak E, Shulman GL, Raichle ME (2001) Medial prefrontal cortex and self-referential mental activity: Relation to a default mode of brain function. Proc Natl Acad Sci USA 98:4259–4264CrossRefGoogle Scholar
  27. Habich A, Klöppel S, Abdulkadir A, Scheller E, Nissen C, Peter J (2017) Anodal tDCS enhances verbal episodic memory in initially low performers. Front Hum Neurosci 11:542CrossRefGoogle Scholar
  28. Hämmerer D, Bonaiuto J, Klein-Flügge M, Bikson M, Bestmann S (2016) Selective alteration of human value decisions with medial frontal tDCS is predicted by changes in attractor dynamics. Sci Rep 6:25160CrossRefGoogle Scholar
  29. Hausmann M, Becker C, Gather U, Gunturkun O (2002) Functional cerebral asymmetries during the menstrual cycle: A cross-sectional and longitudinal analysis. Neuropsychologia 40:808–816CrossRefGoogle Scholar
  30. Heinen K, Sagliano L, Candini M, Husain M, Cappelletti M, Zokaei N (2016) Cathodal transcranial direct current stimulation over posterior parietal cortex enhances distinct aspects of visual working memory. Neuropsychologia 87:35–42CrossRefGoogle Scholar
  31. Holmes AJ, Lee PH, Hollinshead MO, Bakst L, Roffman JL, Smoller JW, Buckner RL (2012) Individual differences in amygdala-medial prefrontal anatomy link negative affect, impaired social functioning, and polygenic depression risk. J Neurosci 32:18087–18100CrossRefGoogle Scholar
  32. Hsu TY, Tseng P, Liang WK, Cheng SK, Juan CH (2014) Transcranial direct current stimulation over right posterior parietal cortex changes prestimulus alpha oscillation in visual short-term memory task. Neuroimage 98:306–313CrossRefGoogle Scholar
  33. Hsu TY, Juan CH, Tseng P (2016) Individual differences and state-dependent responses in transcranial direct current stimulation. Front Hum Neurosci 10:643PubMedPubMedCentralGoogle Scholar
  34. Hurley R, Machado L (2017) Using tDCS priming to improve brain function: Can metaplasticity provide the key to boosting outcomes? Neurosci Biobehav Rev 83:155–159CrossRefGoogle Scholar
  35. Huskey R, Craighead B, Miller MB, Weber R (2018) Does intrinsic reward motivate cognitive control? A naturalistic-fMRI study based on the synchronization theory of flow. Cogn Affect Behav Neurosci 18:902–924CrossRefGoogle Scholar
  36. Jacobson L, Koslowsky M, Lavidor M (2012) tDCS polarity effects in motor and cognitive domains: a meta-analytical review. Exp Brain Res 216:1–10CrossRefGoogle Scholar
  37. Jenkins AC, Mitchell JP (2011) Medial prefrontal cortex subserves diverse forms of self-reflection. Soc Neurosci 6:211–218CrossRefGoogle Scholar
  38. Johnson MK, Nolen-Hoeksema S, Mitchell KJ, Levin Y (2009) Medial cortex activity, self-reflection and depression. Soc Cogn Affect Neurosci 4:313–327CrossRefGoogle Scholar
  39. Karabanov A, Ziemann U, Hamada M, George MS, Quartarone A, Classen J, Massimini M, Rothwell J, Siebner HR (2015) Consensus paper: probing homeostatic plasticity of human cortex with non-invasive transcranial brain stimulation. Brain Stimulat 8:993–1006CrossRefGoogle Scholar
  40. Krause B, Cohen Kadosh R (2014) Not all brains are created equal: the relevance of individual differences in responsiveness to transcranial electrical stimulation. Front Syst Neurosci 8:25PubMedPubMedCentralGoogle Scholar
  41. Lang N, Siebner HR, Ernst D, Nitsche MA, Paulus W, Lemon RN, Rothwell JC (2004) Preconditioning with transcranial direct current stimulation sensitizes the motor cortex to rapid-rate transcranial magnetic stimulation and controls the direction of after-effects. Biol Psychiatry 56:634–639CrossRefGoogle Scholar
  42. Learmonth G, Thut G, Benwell CS, Harvey M (2015) The implications of state-dependent tDCS effects in aging: behavioural response is determined by baseline performance. Neuropsychologia 74:108–119CrossRefGoogle Scholar
  43. Liu TT, Brown GG (2007) Measurement of cerebral perfusion with arterial spin labeling: part 1. Methods. J Int Neuropsychol Soc 13:517–525CrossRefGoogle Scholar
  44. López-Alonso V, Cheeran B, Río-Rodríguez D, Fernández-Del-Olmo M (2014) Inter-individual variability in response to non-invasive brain stimulation paradigms. Brain Stimulat 7:372–380CrossRefGoogle Scholar
  45. Manuel AL, David AW, Bikson M, Schnider A (2014) Frontal tDCS modulates orbitofrontal reality filtering. Neuroscience 265:21–27CrossRefGoogle Scholar
  46. Marusak HA, Thomason ME, Peters C, Zundel C, Elrahal F, Rabinak CA (2016) You say ‘prefrontal cortex’ and I say ‘anterior cingulate’: meta-analysis of spatial overlap in amygdala-to-prefrontal connectivity and internalizing symptomology. Transl Psychiatry 6:e944CrossRefGoogle Scholar
  47. McConathey EM, White NC, Gervits F, Ash S, Coslett HB, Grossman M, Hamilton RH (2017) Baseline performance predicts tDCS-mediated improvements in language symptoms in primary progressive aphasia. Front Hum Neurosci 11:347CrossRefGoogle Scholar
  48. Murphy ER, Barch DM, Pagliaccio D, Luby JL, Belden AC (2016) Functional connectivity of the amygdala and subgenual cingulate during cognitive reappraisal of emotions in children with MDD history is associated with rumination. Dev Cogn Neurosci 18:89–100CrossRefGoogle Scholar
  49. Nakamura K, Kawabata H (2015) Transcranial direct current stimulation over the medial prefrontal cortex and left primary motor cortex (mPFC-lPMC) affects subjective beauty but not ugliness. Front Hum Neurosci 9:654PubMedPubMedCentralGoogle Scholar
  50. Nichols TE, Das S, Eickhoff SB, Evans AC, Glatard T, Hanke M, Kriegeskorte N, Milham MP, Poldrack RA, Poline JB, Proal E, Thirion B, Van Essen DC, White T, Yeo BT (2017) Best practices in data analysis and sharing in neuroimaging using MRI. Nat Neurosci 20:299–303CrossRefGoogle Scholar
  51. Nitsche MA, Cohen LG, Wassermann EM, Priori A, Lang N, Antal A, Paulus W, Hummel F, Boggio PS, Fregni F, Pascual-Leone A (2008) Transcranial direct current stimulation: state of the art 2008. Brain Stimulat 1:206–223CrossRefGoogle Scholar
  52. Paulus W (2011) Transcranial electrical stimulation (tES—tDCS; tRNS, tACS) methods. Neuropsychol Rehabil 21:602–617CrossRefGoogle Scholar
  53. Perceval G, Martin AK, Copland DA, Laine M, Meinzer M (2017) High-definition tDCS of the temporo-parietal cortex enhances access to newly learned words. Sci Rep 7:17023CrossRefGoogle Scholar
  54. Pletzer B, Kronbichler M, Nuerk HC, Kerschbaum H (2013) Sex differences in the processing of global vs. local stimulus aspects in a two-digit number comparison task—an fMRI study. PLoS ONE 8:e53824CrossRefGoogle Scholar
  55. Purpura DP, McMurtry JG (1965) Intracellular activities and evoked potential changes during polarization of motor cortex. J Neurophysiol 28:166–185CrossRefGoogle Scholar
  56. Reinhart RM, Xiao W, McClenahan LJ, Woodman GF (2016) Electrical stimulation of visual cortex can immediately improve spatial vision. Curr Biol 26:1867–1872CrossRefGoogle Scholar
  57. Schaal NK, Kretschmer M, Keitel A, Krause V, Pfeifer J, Pollok B (2017) The significance of the right dorsolateral prefrontal cortex for pitch memory in non-musicians depends on baseline pitch memory abilities. Front Neurosci 11:677CrossRefGoogle Scholar
  58. Siebner HR, Lang N, Rizzo V, Nitsche MA, Paulus W, Lemon RN, Rothwell JC (2004) Preconditioning of low-frequency repetitive transcranial magnetic stimulation with transcranial direct current stimulation: evidence for homeostatic plasticity in the human motor cortex. J Neurosci 24:3379–3385CrossRefGoogle Scholar
  59. Strobach T, Antonenko D, Abbarin M, Escher M, Flöel A, Schubert T (2017) Modulation of dual-task control with right prefrontal transcranial direct current stimulation (tDCS). Exp Brain Res 236:227–241CrossRefGoogle Scholar
  60. Tseng P, Hsu TY, Chang CF, Tzeng OJ, Hung DL, Muggleton NG, Walsh V, Liang WK, Cheng SK, Juan CH (2012) Unleashing potential: transcranial direct current stimulation over the right posterior parietal cortex improves change detection in low-performing individuals. J Neurosci 32:10554–10561CrossRefGoogle Scholar
  61. Turkeltaub PE, Benson J, Hamilton RH, Datta A, Bikson M, Coslett HB (2012) Left lateralizing transcranial direct current stimulation improves reading efficiency. Brain Stimulat 5:201–207CrossRefGoogle Scholar
  62. Ullén F, de Manzano Ö, Almeida R, Magnusson PKE, Pedersen NL, Nakamura J, Csíkszentmihályi M, Madison G (2012) Proneness for psychological flow in everyday life: Associations with personality and intelligence. Personality Individ Differ 52:167–172CrossRefGoogle Scholar
  63. Ulrich M, Keller J, Hoenig K, Waller C, Grön G (2014) Neural correlates of experimentally induced flow experiences. Neuroimage 86:194–202CrossRefGoogle Scholar
  64. Ulrich M, Keller J, Grön G (2016a) Dorsal raphe nucleus down-regulates medial prefrontal cortex during experience of flow. Front Behav Neurosci 10:169CrossRefGoogle Scholar
  65. Ulrich M, Keller J, Grön G (2016b) Neural signatures of experimentally induced flow experiences identified in a typical fMRI block design with BOLD imaging. Soc Cogn Affect Neurosci 11:496–507CrossRefGoogle Scholar
  66. van Buuren M, Gladwin TE, Zandbelt BB, Kahn RS, Vink M (2010) Reduced functional coupling in the default-mode network during self-referential processing. Hum Brain Mapp 31:1117–1127CrossRefGoogle Scholar
  67. Viviani R, Messina I, Walter M (2011) Resting state functional connectivity in perfusion imaging: Correlation maps with BOLD connectivity and resting state perfusion. PLoS One 6:e27050CrossRefGoogle Scholar
  68. Wang J, Aguirre GK, Kimberg DY, Roc AC, Li L, Detre JA (2003) Arterial spin labeling perfusion fMRI with very low task frequency. Magn Reson Med 49:796–802CrossRefGoogle Scholar
  69. Wang DJ, Chen Y, Fernandez-Seara MA, Detre JA (2011) Potentials and challenges for arterial spin labeling in pharmacological magnetic resonance imaging. J Pharmacol Exp Ther 337:359–366CrossRefGoogle Scholar
  70. Whitfield-Gabrieli S, Moran JM, Nieto-Castanon A, Triantafyllou C, Saxe R, Gabrieli JD (2011) Associations and dissociations between default and self-reference networks in the human brain. Neuroimage 55:225–232CrossRefGoogle Scholar
  71. Yang Y, Gu H, Ross TJ, Zhan W, Yang S (2005) Single-shot magnetic resonance imaging (MRI) techniques and their applications. In: Leondes CT (ed) Medical imaging systems technology: modalities, vol 2. World Scientific Publishing Co., Hackensack, pp 241–280CrossRefGoogle Scholar
  72. Zink CF, Stein JL, Kempf L, Hakimi S, Meyer-Lindenberg A (2010) Vasopressin modulates medial prefrontal cortex-amygdala circuitry during emotion processing in humans. J Neurosci 30:7017–7022CrossRefGoogle Scholar
  73. Zysset S, Huber O, Samson A, Ferstl EC, von Cramon DY (2003) Functional specialization within the anterior medial prefrontal cortex: a functional magnetic resonance imaging study with human subjects. Neurosci Lett 335:183–186CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Section Neuropsychology and Functional Imaging, Department of PsychiatryUniversity of UlmUlmGermany
  2. 2.German Center for Neurodegenerative Diseases (DZNE)BonnGermany

Personalised recommendations