Advertisement

Experimental Brain Research

, Volume 236, Issue 10, pp 2751–2763 | Cite as

Fast periodic visual stimulation to study tool-selective processing in the human brain

  • Roxane De Keyser
  • André Mouraux
  • Genevieve L. Quek
  • Diana M. Torta
  • Valéry Legrain
Research Article

Abstract

Because tools are manipulated for the purpose of action, they are often considered to be a specific object category that associates perceptual and motor properties. Their neural processing has been studied extensively by comparing the cortical activity elicited by the separate presentation of tool and non-tool objects, assuming that observed differences are solely due to activity selective for processing tools. Here, using a fast periodic visual stimulation (FPVS) paradigm, we isolated EEG activity selectively related to the processing of tool objects embedded in a stream of non-tool objects. Participants saw a continuous sequence of tool and non-tool images at a 3.7 Hz presentation rate, arranged as a repeating pattern of four non-tool images followed by one tool image. We expected the stimulation to generate an EEG response at the frequency of image presentation (3.7 Hz) and its harmonics, reflecting activity common to the processing of tool and non-tool images. Most importantly, if tool and non-tool images evoked different neural responses, we expected this differential activity to generate an additional response at the frequency of tool images (3.7 Hz/5 = 0.74 Hz). To ensure that this response was not due to unaccounted for systematic differences in low-level visual features, we also tested a phase-scrambled version of the sequence. The periodic insertion of tool stimuli within a stream of non-tool stimuli elicited a significant EEG response at the tool-selective frequency and its harmonics. This response was reduced when the images were phase-scrambled. We conclude that FPVS is a promising technique to selectively measure tool-related activity.

Keywords

Electroencephalogram Tool processing Fast periodic visual stimulation 

Notes

Acknowledgements

RDK, DT, and VL are supported by the Fund for Scientific Research of the French speaking community of Belgium (F.R.S.-FNRS). DT is also supported by the Asthenes long-term structural funding Methusalem grant by the Flemish Government of Belgium. AM is supported by the ERC “Starting Grant” (PROBING PAIN 336130). GQ is supported by a co-funding initiative between the Université catholique de Louvain and the Marie Skłodowska-Curie Actions of the European Commission (F211800012).

Compliance with ethical standards

Conflict of interest

The authors declare no competing financial interest.

References

  1. Ales JM, Farzin F, Rossion B, Norcia AM (2012) An objective method for measuring face detection thresholds using the sweep steady-state visual evoked response. J Vis 12:1–18.  https://doi.org/10.1167/12.10.18.Introduction CrossRefGoogle Scholar
  2. Alonso-Prieto E, Belle G, Van Liu-Shuang J et al (2013) The 6 Hz fundamental stimulation frequency rate for individual face discrimination in the right occipito-temporal cortex. Neuropsychologia 51:2863–2875.  https://doi.org/10.1016/j.neuropsychologia.2013.08.018 CrossRefPubMedGoogle Scholar
  3. Bracci S, Op de Beeck H (2016) Dissociations and associations between shape and category representations in the two visual pathways. J Neurosci 36:432–444.  https://doi.org/10.1523/JNEUROSCI.2314-15.2016 CrossRefPubMedGoogle Scholar
  4. Chao LL, Martin A (2000) Representation of manipulable man-made objects in the dorsal stream. Neuroimage 12:478–484.  https://doi.org/10.1006/nimg.2000.0635 CrossRefPubMedGoogle Scholar
  5. Chao LL, Haxby JV, Martin A (1999) Attribute-based neural substrates in temporal cortex for perceiving and knowing about objects. Nat Neurosci 2:913–919.  https://doi.org/10.1038/13217 CrossRefPubMedGoogle Scholar
  6. Chen J, Snow JC, Culham JC, Goodale MA (2017) What role does “elongation” play in “tool-specific” activation and connectivity in the dorsal and ventral visual streams? Cereb Cortex.  https://doi.org/10.1093/cercor/bhx017 CrossRefPubMedPubMedCentralGoogle Scholar
  7. Colon E, Nozaradan S, Legrain V, Mouraux A (2012) Steady-state evoked potentials to tag specific components of nociceptive cortical processing. Neuroimage 60:571–581.  https://doi.org/10.1016/j.neuroimage.2011.12.015 CrossRefPubMedGoogle Scholar
  8. Colon E, Legrain V, Huang G, Mouraux A (2015) Frequency tagging of steady-state evoked potentials to explore the crossmodal links in spatial attention between vision and touch. Psychophysiology 52:1498–1510.  https://doi.org/10.1111/psyp.12511 CrossRefPubMedPubMedCentralGoogle Scholar
  9. Creem-Regehr SH, Lee JN (2005) Neural representations of graspable objects: are tools special? Cogn Brain Res 22:457–469.  https://doi.org/10.1016/j.cogbrainres.2004.10.006 CrossRefGoogle Scholar
  10. Di Russo F, Pitzalis S, Aprile T et al (2007) Spatiotemporal analysis of the cortical sources of the steady-state visual evoked potential. Hum Brain Mapp 28:323–334.  https://doi.org/10.1002/hbm.20276 CrossRefPubMedGoogle Scholar
  11. Dzhelyova M, Jacques C, Rossion B (2017) At a single glance: fast periodic visual stimulation uncovers the spatio-temporal dynamics of brief facial expression changes in the human brain. Cereb Cortex 27:4106–4123.  https://doi.org/10.1093/cercor/bhw223 CrossRefPubMedGoogle Scholar
  12. Fabre-Thorpe M (2011) The characteristics and limits of rapid visual categorization. Front Psychol 2:1–12.  https://doi.org/10.3389/fpsyg.2011.00243 CrossRefGoogle Scholar
  13. Fiser J, Aslin RN (2002) Statistical learning of higher-order temporal structure from visual shape sequences. J Exp Psychol Learn Mem Cogn 28:458–467.  https://doi.org/10.1037/0278-7393.28.3.458 CrossRefPubMedGoogle Scholar
  14. Gentile F, Rossion B (2014) Temporal frequency tuning of cortical face-sensitive areas for individual face perception. Neuroimage 90:256–265.  https://doi.org/10.1016/j.neuroimage.2013.11.053 CrossRefPubMedGoogle Scholar
  15. Goodale MA, Milner AD (1992) Separate visual pathways for perception and action. Trends Neurosci 15:20–25.  https://doi.org/10.1016/0166-2236(92)90344-8 CrossRefPubMedGoogle Scholar
  16. Grafton ST, Fadiga L, Arbib M, Rizzolatti G (1997) Premotor cortex activation during observation and naming of familiar tools. Neuroimage 6:231–236.  https://doi.org/10.1006/nimg.1997.0293 CrossRefPubMedGoogle Scholar
  17. Guillaume M, Mejias S, Rossion B et al (2018) A rapid, objective and implicit measure of visual quantity discrimination. Neuropsychologia 111:180–189.  https://doi.org/10.1016/j.neuropsychologia.2018.01.044 CrossRefPubMedGoogle Scholar
  18. Hutchison RM, Culham JC, Everling S et al (2014) Distinct and distributed functional connectivity patterns across cortex reflect the domain-specific constraints of object, face, scene, body, and tool category-selective modules in the ventral visual pathway. Neuroimage 96:216–236.  https://doi.org/10.1016/j.neuroimage.2014.03.068 CrossRefPubMedGoogle Scholar
  19. Hyvärinen A, Oja E (2000) Independent component analysis: algorithms and applications. Neural Netw 13:411–430CrossRefPubMedGoogle Scholar
  20. Ishai A, Ungerleider LG, Martin A, Haxby JV (2000) The representation of objects in the human occipital and temporal cortex. J Cogn Neurosci 12:35–51.  https://doi.org/10.1162/089892900564055 CrossRefPubMedGoogle Scholar
  21. Johnson-Frey SH (2004) The neural bases of complex tool use in humans. Trends Cogn Sci 8:71–78.  https://doi.org/10.1016/j.tics.2003.12.002 CrossRefPubMedGoogle Scholar
  22. Koenig-Robert R, VanRullen R (2013) SWIFT: a novel method to track the neural correlates of recognition. Neuroimage 81:273–282.  https://doi.org/10.1016/j.neuroimage.2013.04.116 CrossRefPubMedGoogle Scholar
  23. Lithari C, Sánchez-Garciá C, Ruhnau P, Weisz N (2016) Large-scale network-level processes during entrainment. Brain Res 1635:143–152.  https://doi.org/10.1016/j.brainres.2016.01.043 CrossRefPubMedPubMedCentralGoogle Scholar
  24. Liu-Shuang J, Norcia AM, Rossion B (2014) An objective index of individual face discrimination in the right occipito-temporal cortex by means of fast periodic oddball stimulation. Neuropsychologia 52:57–72.  https://doi.org/10.1016/j.neuropsychologia.2013.10.022 CrossRefPubMedGoogle Scholar
  25. Lochy A, Van Belle G, Rossion B (2015) A robust index of lexical representation in the left occipito-temporal cortex as evidenced by EEG responses to fast periodic visual stimulation. Neuropsychologia 66:18–31.  https://doi.org/10.1016/j.neuropsychologia.2014.11.007 CrossRefPubMedGoogle Scholar
  26. Lochy A, Van Reybroeck M, Rossion B (2016) Left cortical specialization for visual letter strings predicts rudimentary knowledge of letter-sound association in preschoolers. Proc Natl Acad Sci 113:8544–8549.  https://doi.org/10.1073/pnas.1520366113 CrossRefPubMedGoogle Scholar
  27. Lochy A, Zimmermann FGS, Laguesse R et al (2018) Does extensive training at individuating novel objects in adulthood lead to visual expertise? The role of facelikeness. J Cogn Neurosci 30:449–467.  https://doi.org/10.1162/jocn_a_01212 CrossRefPubMedGoogle Scholar
  28. Martin A, Wiggs CL, Ungerleider LG, Haxby JV (1996) Neural correlates of category-specific knowledge. Nature 379:649–652CrossRefPubMedGoogle Scholar
  29. Mouraux A, Iannetti GD, Colon E et al (2011) Nociceptive steady-state evoked potentials elicited by rapid periodic thermal stimulation of cutaneous nociceptors. J Neurosci 31:6079–6087.  https://doi.org/10.1523/JNEUROSCI.3977-10.2011 CrossRefPubMedGoogle Scholar
  30. Müller MM, Teder W, Hillyard SA (1997) Magnetoencephalographic recording of steady-state visual evoked cortical activity. Brain Topogr 9:163–168.  https://doi.org/10.1007/BF01190385 CrossRefPubMedGoogle Scholar
  31. Norcia AM, Appelbaum LG, Ales JM et al (2015) The steady-state visual evoked potential in vision research: a review. J Vis 15:4.  https://doi.org/10.1167/15.6.4.doi CrossRefPubMedPubMedCentralGoogle Scholar
  32. Nozaradan S, Peretz I, Mouraux A (2012a) Selective neuronal entrainment to the beat and meter embedded in a musical rhythm. J Neurosci Neurosci 32:17572–17581.  https://doi.org/10.1523/JNEUROSCI.3203-12.2012 CrossRefGoogle Scholar
  33. Nozaradan S, Peretz I, Mouraux A (2012b) Steady-state evoked potentials as an index of multisensory temporal binding. Neuroimage 60:21–28.  https://doi.org/10.1016/j.neuroimage.2011.11.065 CrossRefPubMedGoogle Scholar
  34. Park J (2018) A neural basis for the visual sense of number and its development: a steady-state visual evoked potential study in children and adults. Dev Cogn Neurosci 30:333–343.  https://doi.org/10.1016/j.dcn.2017.02.011 CrossRefPubMedGoogle Scholar
  35. Pastor M, Artieda J, Arbizu J et al (2003) Human cerebral activation during steady-state visual-evoked responses. J Neurosci 23:11621–11627.  https://doi.org/10.1523/JNEUROSCI.23-37-11621.2003 CrossRefPubMedGoogle Scholar
  36. Peelen MV, Caramazza A (2012) Conceptual object representations in human anterior temporal cortex. J Neurosci 32:15728–15736.  https://doi.org/10.1523/JNEUROSCI.1953-12.2012 CrossRefPubMedGoogle Scholar
  37. Proklova D, Kaiser D, Peelen MV (2016) Disentangling representations of object shape and object category in human visual cortex: the animate–inanimate distinction. J Cogn Neurosci 28:680–692.  https://doi.org/10.1162/jocn_a_00924 CrossRefPubMedGoogle Scholar
  38. Quek GL, Rossion B (2017) Category-selective human brain processes elicited in fast periodic visual stimulation streams are immune to temporal predictability. Neuropsychologia 104:182–200.  https://doi.org/10.1016/j.neuropsychologia.2017.08.010 CrossRefPubMedGoogle Scholar
  39. Regan D (1977) Steady-state evoked potentials. J Opt Soc Am 67:1475.  https://doi.org/10.1364/JOSA.67.001475 CrossRefPubMedGoogle Scholar
  40. Retter TL, Rossion B (2015) Global shape information increases but color information decreases the composite face effect. Perception 44:511–528.  https://doi.org/10.1068/p7826 CrossRefPubMedGoogle Scholar
  41. Rizzolatti G, Fogassi L, Gallese V (2002) Motor and cognitive functions of the ventral premotor cortex. Curr Opin Neurobiol 12:149–154.  https://doi.org/10.1016/S0959-4388(02)00308-2 CrossRefPubMedGoogle Scholar
  42. Rossion B, Torfs K, Jacques C, Liu-Shuang J (2015) Fast periodic presentation of natural images reveals a robust face-selective electrophysiological response in the human brain. J Vis 15:18.  https://doi.org/10.1167/15.1.18 CrossRefPubMedGoogle Scholar
  43. Sakuraba S, Sakai S, Yamanaka M et al (2012) Does the human dorsal stream really process a category for tools? J Neurosci 32:3949–3953.  https://doi.org/10.1523/JNEUROSCI.3973-11.2012 CrossRefPubMedGoogle Scholar
  44. Stojanoski B, Cusack R (2014) Time to wave good-bye to phase scrambling: creating controlled scrambled images using diffeomorphic transformations. J Vis 14:6–6.  https://doi.org/10.1167/14.12.6 CrossRefPubMedGoogle Scholar
  45. Stothart G, Quadflieg S, Milton A (2017) A fast and implicit measure of semantic categorisation using steady state visual evoked potentials. Neuropsychologia 102:11–18.  https://doi.org/10.1016/j.neuropsychologia.2017.05.025 CrossRefPubMedGoogle Scholar
  46. Thomson MGA (1999) Visual coding and the phase structure of natural scenes. Netw Comput neural Syst 10:123–132.  https://doi.org/10.1088/0954-898X_10_2_302 CrossRefGoogle Scholar
  47. Ungerleider LG, Haxby JV (1994) “What” and “where” in the human brain. Curr Opin Neurobiol 4:157–165.  https://doi.org/10.1016/0959-4388(94)90066-3 CrossRefPubMedGoogle Scholar
  48. Urbach TP, Kutas M (2002) The intractability of scaling scalp distributions to infer neuroelectric sources. Psychophysiology 39:791–808.  https://doi.org/10.1111/1469-8986.3960791 CrossRefPubMedGoogle Scholar
  49. Urbach TP, Kutas M (2006) Interpreting event-related brain potential (ERP) distributions: implications of baseline potentials and variability with application to amplitude normalization by vector scaling. Biol Psychol 72:333–343.  https://doi.org/10.1016/j.biopsycho.2005.11.012 CrossRefPubMedGoogle Scholar
  50. VanRullen R, Thorpe SJ (2001) Is it a bird? Is it a plane? Ultra-rapid visual categorisation of natural and artifactual objects. Perception 30:655–668.  https://doi.org/10.1068/p3029 CrossRefPubMedGoogle Scholar
  51. Vialatte F-B, Maurice M, Dauwels J, Cichocki A (2010) Steady-state visually evoked potentials: focus on essential paradigms and future perspectives. Prog Neurobiol 90:418–438.  https://doi.org/10.1016/j.pneurobio.2009.11.005 CrossRefPubMedGoogle Scholar
  52. Wilf M, Holmes NP, Schwartz I, Makin TR (2013) Dissociating between object affordances and spatial compatibility effects using early response components. Front Psychol.  https://doi.org/10.3389/fpsyg.2013.00591 CrossRefPubMedPubMedCentralGoogle Scholar
  53. Xu B, Liu-Shuang J, Rossion B, Tanaka J (2017) Individual differences in face identity processing with fast periodic visual stimulation. J Cogn Neurosci 29:1368–1377.  https://doi.org/10.1162/jocn_a_01126 CrossRefPubMedGoogle Scholar
  54. Zhou H, Melloni L, Poeppel D, Ding N (2016) Interpretations of frequency domain analyses of neural entrainment: periodicity, fundamental frequency, and harmonics. Front Hum Neurosci 10:1–8.  https://doi.org/10.3389/fnhum.2016.00274 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Roxane De Keyser
    • 1
  • André Mouraux
    • 1
  • Genevieve L. Quek
    • 1
    • 2
    • 4
  • Diana M. Torta
    • 1
    • 3
  • Valéry Legrain
    • 1
    • 2
  1. 1.Institute of Neuroscience (IoNS), Faculty of MedicineUniversité catholique de LouvainBrusselsBelgium
  2. 2.Psychological Sciences Research InstituteUniversité catholique de LouvainLouvain-la-NeuveBelgium
  3. 3.Research Unit for Health PsychologyUniversity of LeuvenLouvainBelgium
  4. 4.Donders Center for CognitionRadbound University NijmegenNijmegenThe Netherlands

Personalised recommendations