Experimental Brain Research

, Volume 236, Issue 10, pp 2545–2552 | Cite as

The habitual motor vertical of humans depends on gravicentric and egocentric cues, but only little on visual cues

  • Nils BuryEmail author
  • Otmar Bock
Research Article


Many studies have evaluated the interplay of gravicentric, egocentric, and visual cues for our perception of the vertical, but little is known about their interplay for motor control. Thirty-five participants flipped a switch “down” in experimental conditions which systematically varied body posture (upright; tilted 45° left-ear-down), visually indicated vertical (absent; aligned with the long body axis; rotated 45° counterclockwise with respect to the long body axis), and egocentric tactile information provided by a handhold (absent; present). Since we were interested in the participants’ habitual rather than an instructed motor vertical, we did not specify which cues they should rely on. Our data revealed two response categories. Type-1 responses depended moderately on switch position; they relied mainly on gravicentric and egocentric cues, but only marginally on visual cues. Type-2 responses depended strongly on switch position; they relied on egocentric, but not on gravicentric or visual cues. We interpret the dependence on switch position as evidence that egocentric cues for type-2 responses may be anchored in the participants’ arm rather than in their long body axis. In conclusion, the habitual motor vertical can vary when available cues are not aligned, and this variability can compromise manual performance of human operators.


Frames of reference Spatial orientation Internal representation of space Sensorimotor coordination Reaching Arm movements Visuo–vestibular interaction 



This work was supported by the Space Administration Department of the German Aerospace Center of the Federal Republic of Germany (DLR), with funds made available by the German Federal Ministry for Economic Affairs and Energy, based on a resolution of the German Federal Parliament; award code 50WB0726. We thank (in alphabetical order) Pia Dreiner, Jürgen Geiermann, Verena Hammes, Niklas Joisten, Michael Kalicinski, Thomas Kesnerus, Malte Kraul, and Hartmut Schink, for support in technical work, data collection, and analysis.


  1. Barra J, Benaim C, Chauvineau V, Ohlmann T, Gresty M, Pérennou D (2008) Are rotations in perceived visual vertical and body axis after stroke caused by the same mechanism? Stroke J Cereb Circ 39(11):3099–3101. CrossRefGoogle Scholar
  2. Betts GA, Curthoys IS (1998) Visually perceived vertical and visually perceived horizontal are not orthogonal. Vis Res 38(13):1989–1999. CrossRefPubMedGoogle Scholar
  3. Bock O, Bury N (2016) Flipping a switch “down” when not aligned with the gravitational vertical. Aerosp Med Hum Perform 87(10):838–843. CrossRefPubMedGoogle Scholar
  4. Bock O, Bury N (2018) Interplay of gravicentric, egocentric and visual cues about the vertical in the control of arm movement direction. Perception 47(3):296–305. CrossRefPubMedGoogle Scholar
  5. Bury N, Bock O (2016) Role of gravitational versus egocentric cues for human spatial orientation. Exp Brain Res 234:1013–1018. CrossRefPubMedGoogle Scholar
  6. Ceyte H, Cian C, Nougier V, Olivier I, Trousselard M (2007) Role of gravity-based information on the orientation and localization of the perceived body midline. Exp Brain Res 176(3):504–509. CrossRefPubMedGoogle Scholar
  7. Dyde RT, Jenkin MR, Harris LR (2006) The subjective visual vertical and the perceptual upright. Exp Brain Res 173(4):612–622. CrossRefPubMedGoogle Scholar
  8. Ebenholtz SM (1970) Perception of the vertical with body tilt in the median plane. J Exp Psychol 83(1):1–6. CrossRefPubMedGoogle Scholar
  9. Ebenholtz SM (1977) Determinants of the rod and frame effect: the role of retinal size. Percept Psychophys 22(6):531–538. CrossRefGoogle Scholar
  10. Ernst MO, Banks MS (2002) Humans integrate visual and haptic information in a statistically optimal fashion. Nature 415:429–433. CrossRefPubMedGoogle Scholar
  11. Hay JC, Pick HL Jr, Ikeda K (1965) Visual capture produced by prism spectacles. Psychon Sci 2(1–12):215–216. CrossRefGoogle Scholar
  12. Howard IP, Childerson L (1994) The contribution of motion, the visual frame, and visual polarity to sensations of body tilt. Perception 23(7):753. CrossRefPubMedGoogle Scholar
  13. Jenkin HL, Jenkin MR, Dyde RT, Harris LR (2004) Shape-from-shading depends on visual, gravitational, and body-orientation cues. Perception 33(12):1453–1461. CrossRefPubMedGoogle Scholar
  14. Lackner JR, DiZio P (2000) Human orientation and movement control in weightless and artificial gravity environments. Exp Brain Res 130:2–26. CrossRefPubMedGoogle Scholar
  15. Le Séac’h AB, McIntyre J (2007) Multimodal reference frame for the planning of vertical arms movements. Neurosci Lett 423(3):211–215. CrossRefPubMedGoogle Scholar
  16. Mittelstaedt H (1983) A new solution to the problem of the subjective vertical. Naturwissenschaften 70:272–281. CrossRefPubMedGoogle Scholar
  17. Oruc I, Sinnett S, Bischof WF, Soto-Faraco S, Lock K, Kingstone A (2008) The effect of attention on the illusory capture of motion in bimodal stimuli. Brain Res 1242:200–208. CrossRefPubMedGoogle Scholar
  18. Paillard J (1991) Motor and representational framing of space. In: Paillard J (ed) Brain space, Oxford University Press, Oxford, pp 163–182Google Scholar
  19. Rock I (1954) The perception of the egocentric orientation of a line. J Exp Psychol 48(5):367–374. CrossRefPubMedGoogle Scholar
  20. Spinelli D, Antonucci G, Daini R, Zoccolotti P (1995) Local and global visual mechanisms underlying individual differences in the rod-and-frame illusion. Atten Percept Psychophys 57(6):915–920. CrossRefGoogle Scholar
  21. Toma S, Sciutti A, Papaxanthis C, Pozzo T (2015) Visuomotor adaptation to a visual rotation is gravity dependent. J Neurophysiol 113(6):1885–1895. CrossRefPubMedGoogle Scholar
  22. Witkin HA, Lewis HB, Hertzman M, Machover K, Meissner PB, Wapner S (1954) Personality through perception: an experimental and clinical study. Harper, OxfordGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of Physiology and AnatomyGerman Sport University CologneCologneGermany

Personalised recommendations