The event-related potential component P3a is diminished by identical deviance repetition, but not by non-identical repetitions

  • Timm Rosburg
  • Michael Weigl
  • Ronja Thiel
  • Ralph Mager
Research Article
  • 59 Downloads

Abstract

Mismatch negativity (MMN) represents an event-related potential (ERP) component which is elicited by deviant sound events in an otherwise regular, repetitive stimulation. The MMN amplitude typically decreases when two identical deviants are presented in direct succession, but it remains stable when the two deviants vary from the standard in different features. Less is known about such repetition effects on another ERP component, the P3a, which usually follows the MMN. In the current study, we investigated how the P3a was affected by identical and non-identical repetitions of sound deviants. The ERP analysis revealed that the P3a amplitudes were strongly diminished when the repeated deviants were identical, but the P3a remained stable when the repeated deviants varied. The findings suggest that not only the deviance detection system, as reflected in the MMN, but also subsequent attention switch systems, as reflected in the P3a, operate independently across different sound features.

Keywords

Attention Event-related potentials Mismatch negativity Prefrontal cortex Predictive coding 

Notes

Acknowledgements

The authors greatly appreciate the assistance of Melanie Hilz and Jacqueline Hamann in collecting part of the data. We greatly appreciated the constructive feedback of the three anonymous reviewers.

Compliance with ethical standards

Conflict of interest

None of the authors have potential conflicts of interest to be disclosed.

Supplementary material

221_2018_5237_MOESM1_ESM.docx (459 kb)
Supplementary material 1 (DOCX 459 KB)

References

  1. Bekinschtein TA, Dehaene S, Rohaut B, Tadel F, Cohen L, Naccache L (2009) Neural signature of the conscious processing of auditory regularities. Proc Natl Acad Sci 106(5):1672–1677CrossRefPubMedPubMedCentralGoogle Scholar
  2. Comerchero MD, Polich J (1999) P3a and P3b from typical auditory and visual stimuli. Clin Neurophysiol 110:24–30CrossRefPubMedGoogle Scholar
  3. Deacon D, Gomes H, Nousak JM, Ritter W, Javitt D (2000) Effect of frequency separation and stimulus rate on the mismatch negativity: an examination of the issue of refractoriness in humans. Neurosci Lett 287:167–170CrossRefPubMedGoogle Scholar
  4. Escera C, Alho K, Schröger E, Winkler I (2000) Involuntary attention and distractibility as evaluated with event-related brain potentials. Audiol Neurootol 5(3–4):151–166CrossRefPubMedGoogle Scholar
  5. Friedman D, Cycowicz Y, Gaeta H (2001) The novelty P3: an event-related brain potential (ERP) sign of the brain’s evaluation of novelty. Neurosci Biobehav Rev 25(4):355–373CrossRefPubMedGoogle Scholar
  6. Friedman D, Nessler D, Kulik J, Hamberger M (2011) The brain’s orienting response (novelty P3) in patients with unilateral temporal lobe resections. Neuropsychologia 49(12):3474–3483CrossRefPubMedPubMedCentralGoogle Scholar
  7. Friston K (2005) A theory of cortical responses. Philos Trans R Soc Lond B Biol Sci 360(1456):815–836CrossRefPubMedPubMedCentralGoogle Scholar
  8. Friston K, Kiebel S (2009) Predictive coding under the free-energy principle. Philos Trans R Soc Lond B Biol Sci 364(1521):1211–1221CrossRefPubMedPubMedCentralGoogle Scholar
  9. Garrido MI, Kilner JM, Kiebel SJ, Stephan KE, Friston KJ (2007) Dynamic causal modelling of evoked potentials: a reproducibility study. Neuroimage 36(3):571–580CrossRefPubMedPubMedCentralGoogle Scholar
  10. Grimm S, Escera C, Nelken I (2016) Early indices of deviance detection in humans and animal models. Biol Psychol 116:23–27CrossRefPubMedGoogle Scholar
  11. Hagen GF, Gatherwright JR, Lopez BA, Polich J (2006) P3a from visual stimuli: task difficulty effects. Int J Psychophysiol 59(1):8–14CrossRefPubMedGoogle Scholar
  12. Horváth J, Bendixen A (2012) Preventing distraction by probabilistic cueing. Int J Psychophysiol 83(3):342–347CrossRefPubMedGoogle Scholar
  13. Horváth J, Winkler I, Bendixen A (2008) Do N1/MMN, P3a, and RON form a strongly coupled chain reflecting the three stages of auditory distraction? Biol Psychol 79(2):139–147CrossRefPubMedGoogle Scholar
  14. Hsiao FJ, Wu ZA, Ho LT, Lin YY (2009) Theta oscillation during auditory change detection: an MEG study. Biol Psychol 81(1):58–66CrossRefPubMedGoogle Scholar
  15. Jacobsen T, Schröger E (2001) Is there a pre-attentive memory-based comparison of pitch? Psychophysiology 38:723–727CrossRefPubMedGoogle Scholar
  16. Jacobsen T, Schröger E (2003) Measuring duration mismatch negativity. Clin Neurophysiol 114(6):1133–1143CrossRefPubMedGoogle Scholar
  17. Jacobsen TK, Steinberg J, Truckenbrodt H, Jacobsen T (2013) Mismatch Negativity (MMN) to successive deviants within one hierarchically structured auditory object. Int J Psychophysiol 87(1):1–7CrossRefPubMedGoogle Scholar
  18. Javitt DC, Lee M, Kantrowitz JT, Martinez A (2018) Mismatch negativity as a biomarker of theta band oscillatory dysfunction in schizophrenia. Schizophr Res 191:51–60CrossRefPubMedGoogle Scholar
  19. Lecaignard F, Bertrand O, Gimenez G, Mattout J, Caclin A (2015) Implicit learning of predictable sound sequences modulates human brain responses at different levels of the auditory hierarchy. Front Hum Neurosci 9:505CrossRefPubMedPubMedCentralGoogle Scholar
  20. Müller D, Schröger E (2007) Temporal grouping affects the automatic processing of deviant sounds. Biol Psychol 74(3):358–364CrossRefPubMedGoogle Scholar
  21. Müller D, Widmann A, Schröger E (2005a) Deviance-repetition effects as a function of stimulus feature, feature value variation, and timing: a mismatch negativity study. Biol Psychol 68:1–14CrossRefPubMedGoogle Scholar
  22. Müller D, Widmann A, Schröger E (2005b) Auditory streaming affects the processing of successive deviant and standard sounds. Psychophysiology 42(6):668–676CrossRefPubMedGoogle Scholar
  23. Näätänen R (1990) The role of attention in auditory by event-related potentials and other brain measures of cognitive function. Behav Brain Sci 13:201–288CrossRefGoogle Scholar
  24. Näätänen R, Alho K (1995) Mismatch negativity–a unique measure of sensory processing in audition. Int J Neurosci 80(1–4):317–337CrossRefPubMedGoogle Scholar
  25. Näätänen R, Gaillard AW, Mäntysalo S (1978) Early selective-attention effect on evoked potential reinterpreted. Acta Psychol (Amst) 42(4):313–329CrossRefGoogle Scholar
  26. Näätänen R, Pakarinen S, Rinne T, Takegata R (2004) The mismatch negativity (MMN): Towards the optimal paradigm. Clin Neurophysiol 115(1):140–144CrossRefPubMedGoogle Scholar
  27. Nicol RM, Chapman SC, Vertes PE, Nathan PJ, Smith ML, Shtyrov Y et al (2012) Fast reconfiguration of high-frequency brain networks in response to surprising changes in auditory input. J Neurophysiol 107(5):1421–1430CrossRefPubMedGoogle Scholar
  28. Nousak JM, Deacon D, Ritter W, Vaughan HG (1996) Storage of information in transient auditory memory. Brain Res Cogn Brain Res 4(4):305–317CrossRefPubMedGoogle Scholar
  29. Pakarinen S, Lovio R, Huotilainen M, Alku P, Näätänen R, Kujala T (2009) Fast multi-feature paradigm for recording several mismatch negativities (MMNs) to phonetic and acoustic changes in speech sounds. Biol Psychol 82(3):219–226CrossRefPubMedGoogle Scholar
  30. Pakarinen S, Huotilainen M, Näätänen R (2010) The mismatch negativity (MMN) with no standard stimulus. Clin Neurophysiol 121(7):1043–1050CrossRefPubMedGoogle Scholar
  31. Partanen E, Torppa R, Pykäläinen J, Kujala T, Huotilainen M (2013) Children’s brain responses to sound changes in pseudo words in a multifeature paradigm. Clin Neurophysiol 124(6):1132–1138CrossRefPubMedGoogle Scholar
  32. Rinne T, Särkkä A, Degerman A, Schröger E, Alho K (2006) Two separate mechanisms underlie auditory change detection and involuntary control of attention. Brain Res 1077(1):135–143CrossRefPubMedGoogle Scholar
  33. Sams M, Alho K, Näätänen R (1984) Short-term habituation and dishabituation of the mismatch negativity of the ERP. Psychophysiology 21(4):434–441CrossRefPubMedGoogle Scholar
  34. Sawaki R, Katayama J (2006) Stimulus context determines whether non-target stimuli are processed as task-relevant or distractor information. Clin Neurophysiol 117(11):2532–2539CrossRefPubMedGoogle Scholar
  35. Schröger E (1997) On the detection of auditory deviations: a pre-attentive activation model. Psychophysiology 34(3):245–257CrossRefPubMedGoogle Scholar
  36. Schubert M, Johannes S, Koch M, Wieringa BM, Dengler R, Munte TF (1998) Differential effects of two motor tasks on ERPs in an auditory classification task: evidence of shared cognitive resources. Neurosci Res 30(2):125–134CrossRefPubMedGoogle Scholar
  37. Sorokin A, Alku P, Kujala T (2010) Change and novelty detection in speech and non-speech sound streams. Brain Res 1327:77–90CrossRefPubMedGoogle Scholar
  38. Strauss M, Sitt JD, King J-R, Elbaz M, Azizi L, Buiatti M et al (2015) Disruption of hierarchical predictive coding during sleep. Proc Natl Acad Sci 112(11):E1353–E1362CrossRefPubMedPubMedCentralGoogle Scholar
  39. Sussman E, Winkler I, Ritter W, Alho K, Näätänen N (1999) Temporal integration of auditory stimulus deviance as reflected by the mismatch negativity. Neurosci Lett 264(1–3):161–164CrossRefPubMedGoogle Scholar
  40. Sussman E, Winkler I, Schröger E (2003) Top-down control over involuntary attention switching in the auditory modality. Psychon Bull Rev 10(3):630–637CrossRefPubMedGoogle Scholar
  41. Tavakoli P, Campbell K (2016) Can an auditory multi-feature optimal paradigm be used for the study of processes associated with attention capture in passive listeners? Brain Res 1648:394–408CrossRefPubMedGoogle Scholar
  42. Todd J, Mullens D (2011) Implementing conditional inference in the auditory system: what matters?. Psychophysiology 48(10):1434–1443CrossRefPubMedGoogle Scholar
  43. Todd J, Robinson J (2010) The use of conditional inference to reduce prediction error? A mismatch negativity (MMN) study. Neuropsychologia 48(10):3009–3018CrossRefPubMedGoogle Scholar
  44. Todd J, Myers R, Pirillo R, Drysdale K (2010) Neuropsychological correlates of auditory perceptual inference: a mismatch negativity (MMN) study. Brain Res 1310:113–123CrossRefPubMedGoogle Scholar
  45. Todd J, Whitson L, Smith E, Michie PT, Schall U, Ward PB (2014) What’s intact and what’s not within the mismatch negativity system in schizophrenia. Psychophysiology 51(4):337–347CrossRefPubMedGoogle Scholar
  46. Volosin M, Horváth J (2014) Knowledge of sequence structure prevents auditory distraction: an ERP study. Int J Psychophysiol 92(3):93–98CrossRefPubMedGoogle Scholar
  47. Wacongne C, Labyt E, van Wassenhove V, Bekinschtein T, Naccache L, Dehaene S (2011) Evidence for a hierarchy of predictions and prediction errors in human cortex. Proc Natl Acad Sci 108(51):20754–20759CrossRefPubMedPubMedCentralGoogle Scholar
  48. Winkler I (2007) Interpreting the mismatch negativity. J Psychophysiol 21(3):147–163CrossRefGoogle Scholar
  49. Winkler I, Czigler I, Jaramillo M, Paavilainen P, Näätänen R (1998) Temporal constraints of auditory event synthesis: evidence from ERPs. Neuroreport 9(3):495–499CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Forensic Psychiatry, University Psychiatric ClinicsUniversity BaselBaselSwitzerland
  2. 2.Experimental Neuropsychology Unit, Department of PsychologySaarland UniversitySaarbrückenGermany

Personalised recommendations