Experimental Brain Research

, Volume 236, Issue 3, pp 733–743 | Cite as

Children with autism spectrum disorder have unstable neural responses to sound

  • Sebastian Otto-Meyer
  • Jennifer Krizman
  • Travis White-Schwoch
  • Nina Kraus
Research Article


Autism spectrum disorder (ASD) is diverse, manifesting in a wide array of phenotypes. However, a consistent theme is reduced communicative and social abilities. Auditory processing deficits have been shown in individuals with ASD—these deficits may play a role in the communication difficulties ASD individuals experience. Specifically, children with ASD have delayed neural timing and poorer tracking of a changing pitch relative to their typically developing peers. Given that accurate processing of sound requires highly coordinated and consistent neural activity, we hypothesized that these auditory processing deficits stem from a failure to respond to sound in a consistent manner. Therefore, we predicted that individuals with ASD have reduced neural stability in response to sound. We recorded the frequency-following response (FFR), an evoked response that mirrors the acoustic features of its stimulus, of high-functioning children with ASD age 7–13 years. Evident across multiple speech stimuli, children with ASD have less stable FFRs to speech sounds relative to their typically developing peers. This reduced auditory stability could contribute to the language and communication profiles observed in individuals with ASD.


Autism spectrum disorder Neural stability Neural variability FFR Auditory Sound processing 



We thank members of the Auditory Neuroscience Laboratory for their assistance with data collection, as well as Trent Nicol and Spencer Benjamin Smith for comments on an earlier draft of the manuscript. We would also like to acknowledge Nicole Russo’s work in collecting the data used for these analyses. This work was supported by Knowles Hearing Center, Northwestern University.

Compliance with ethical standards

Conflict of Interest

None of the authors have potential conflicts of interest to be disclosed.


  1. American Psychiatric Association (2013) Diagnostic and statistical manual of mental disorders 5th edn. Arlington, VAGoogle Scholar
  2. Anderson S, Parbery-Clark A, White-Schwoch T, Kraus N (2012) Aging affects neural precision of speech encoding. J Neurosci Off J Soc Neurosci 32:14156–14164.  https://doi.org/10.1523/JNEUROSCI.2176-12.2012 CrossRefGoogle Scholar
  3. Bailey PJ, Snowling MJ (2002) Auditory processing and the development of language and literacy. Br Med Bull 63:135–146.  https://doi.org/10.1093/bmb/63.1.135 CrossRefPubMedGoogle Scholar
  4. Banai K, Hornickel J, Skoe E et al (2009) Reading and subcortical auditory function. Cereb Cortex NY 19:2699–2707.  https://doi.org/10.1093/cercor/bhp024 CrossRefGoogle Scholar
  5. Baron-Cohen S, Belmonte MK (2005) Autism: a window onto the development of the social and the analytic brain. Annu Rev Neurosci 28:109–126.  https://doi.org/10.1146/annurev.neuro.27.070203.144137 CrossRefPubMedGoogle Scholar
  6. Boersma P (2006) Praat: doing phonetics by computer. http://www.praat.org/
  7. Campbell T, Kerlin JR, Bishop CW, Miller LM (2012) Methods to eliminate stimulus transduction artifact from insert earphones during electroencephalography. Ear Hear 33:144–150.  https://doi.org/10.1097/AUD.0b013e3182280353 CrossRefPubMedPubMedCentralGoogle Scholar
  8. Cerliani L, Mennes M, Thomas RM et al (2015) Increased functional connectivity between subcortical and cortical resting-state networks in autism spectrum disorder. JAMA Psychiatry 72:767–777CrossRefPubMedPubMedCentralGoogle Scholar
  9. Chandrasekaran B, Kraus N (2010) The scalp-recorded brainstem response to speech: neural origins and plasticity. Psychophysiology 47:236–246.  https://doi.org/10.1111/j.1469-8986.2009.00928.x CrossRefPubMedGoogle Scholar
  10. Coffey EBJ, Herholz SC, Chepesiuk AMP et al (2016) Cortical contributions to the auditory frequency-following response revealed by MEG. Nat Commun 7:11070.  https://doi.org/10.1038/ncomms11070 CrossRefPubMedPubMedCentralGoogle Scholar
  11. Coskun MA, Varghese L, Reddoch S et al (2009) Increased response variability in autistic brains? Neuroreport 20:1543–1548.  https://doi.org/10.1097/WNR.0b013e32833246b5 CrossRefPubMedGoogle Scholar
  12. Dajani DR, Uddin LQ (2016) Local brain connectivity across development in autism spectrum disorder: A cross-sectional investigation. Autism Res Off J Int Soc Autism Res 9:43–54.  https://doi.org/10.1002/aur.1494 CrossRefGoogle Scholar
  13. Davis G, Plaisted-Grant K (2015) Low endogenous neural noise in autism. Autism Int J Res Pract 19:351–362.  https://doi.org/10.1177/1362361314552198 CrossRefGoogle Scholar
  14. Dinstein I, Thomas C, Humphreys K et al (2010) Normal movement selectivity in autism. Neuron 66:461–469.  https://doi.org/10.1016/j.neuron.2010.03.034 CrossRefPubMedPubMedCentralGoogle Scholar
  15. Dinstein I, Heeger DJ, Lorenzi L et al (2012) Unreliable evoked responses in autism. Neuron 75:981–991.  https://doi.org/10.1016/j.neuron.2012.07.026 CrossRefPubMedPubMedCentralGoogle Scholar
  16. Doupe AJ, Kuhl PK (1999) Birdsong and human speech: common themes and mechanisms. Annu Rev Neurosci 22:567–631.  https://doi.org/10.1146/annurev.neuro.22.1.567 CrossRefPubMedGoogle Scholar
  17. Engineer CT, Centanni TM, Im KW, Kilgard MP (2014) Speech sound discrimination training improves auditory cortex responses in a rat model of autism. Front Syst Neurosci 8:.  https://doi.org/10.3389/fnsys.2014.00137
  18. Geretsegger M, Elefant C, Mössler KA, Gold C (2014) Music therapy for people with autism spectrum disorder. Cochrane Database Syst Rev.  https://doi.org/10.1002/14651858.CD004381.pub3 PubMedGoogle Scholar
  19. Geschwind DH (2011) Genetics of autism spectrum disorders. Trends Cogn Sci 15:409–416.  https://doi.org/10.1016/j.tics.2011.07.003 CrossRefPubMedPubMedCentralGoogle Scholar
  20. Haigh SM, Heeger DJ, Dinstein I et al (2015) Cortical variability in the sensory-evoked response in autism. J Autism Dev Disord 45:1176–1190.  https://doi.org/10.1007/s10803-014-2276-6 CrossRefPubMedPubMedCentralGoogle Scholar
  21. Hall JW (2006) New handbook for auditory evoked responses, 1 edn. Pearson, BostonGoogle Scholar
  22. Hornickel J, Kraus N (2013) Unstable representation of sound: a biological marker of dyslexia. J Neurosci Off J Soc Neurosci 33:3500–3504.  https://doi.org/10.1523/JNEUROSCI.4205-12.2013 CrossRefGoogle Scholar
  23. Jeng F-C, Hu J, Dickman B et al (2011) Cross-linguistic comparison of frequency-following responses to voice pitch in American and Chinese neonates and adults. Ear Hear 32:699–707.  https://doi.org/10.1097/AUD.0b013e31821cc0df CrossRefPubMedGoogle Scholar
  24. Jeste SS, Geschwind DH (2014) Disentangling the heterogeneity of autism spectrum disorder through genetic findings. Nat Rev Neurol 10:74–81.  https://doi.org/10.1038/nrneurol.2013.278 CrossRefPubMedPubMedCentralGoogle Scholar
  25. King C, Warrier CM, Hayes E, Kraus N (2002) Deficits in auditory brainstem pathway encoding of speech sounds in children with learning problems. Neurosci Lett 319:111–115CrossRefPubMedGoogle Scholar
  26. Klatt DH (1980) Software for a cascade/parallel formant synthesizer. J Acoust Soc Am 67:971–995.  https://doi.org/10.1121/1.383940 CrossRefGoogle Scholar
  27. Kraus N, White-Schwoch T (2015) Unraveling the biology of auditory learning: a cognitive-sensorimotor-reward framework. Trends Cogn Sci 19:642–654.  https://doi.org/10.1016/j.tics.2015.08.017 CrossRefPubMedPubMedCentralGoogle Scholar
  28. Kraus N, Slater J, Thompson EC et al (2014) Music enrichment programs improve the neural encoding of speech in at-risk children. J Neurosci Off J Soc Neurosci 34:11913–11918.  https://doi.org/10.1523/JNEUROSCI.1881-14.2014 CrossRefGoogle Scholar
  29. Krishnan A, Xu Y, Gandour JT, Cariani PA (2004) Human frequency-following response: representation of pitch contours in Chinese tones. Hear Res 189:1–12.  https://doi.org/10.1016/S0378-5955(03)00402-7 CrossRefPubMedGoogle Scholar
  30. Krishnan A, Xu Y, Gandour J, Cariani P (2005) Encoding of pitch in the human brainstem is sensitive to language experience. Cogn Brain Res 25:161–168.  https://doi.org/10.1016/j.cogbrainres.2005.05.004 CrossRefGoogle Scholar
  31. Krizman JL, Skoe E, Kraus N (2010) Stimulus rate and subcortical auditory processing of speech. Audiol Neurootol 15:332–342.  https://doi.org/10.1159/000289572 CrossRefPubMedPubMedCentralGoogle Scholar
  32. Krizman J, Marian V, Shook A et al (2012a) Subcortical encoding of sound is enhanced in bilinguals and relates to executive function advantages. Proc Natl Acad Sci USA 109:7877–7881.  https://doi.org/10.1073/pnas.1201575109 CrossRefPubMedPubMedCentralGoogle Scholar
  33. Krizman J, Skoe E, Kraus N (2012b) Sex differences in auditory subcortical function. Clin Neurophysiol Off J Int Fed Clin Neurophysiol 123:590–597.  https://doi.org/10.1016/j.clinph.2011.07.037 CrossRefGoogle Scholar
  34. Krizman J, Slater J, Skoe E et al (2015) Neural processing of speech in children is influenced by extent of bilingual experience. Neurosci Lett 585:48–53.  https://doi.org/10.1016/j.neulet.2014.11.011 CrossRefPubMedGoogle Scholar
  35. Markram H, Rinaldi T, Markram K (2007) The intense world syndrome—an alternative hypothesis for Autism. Front Neurosci 1:77–96.  https://doi.org/10.3389/neuro. CrossRefPubMedPubMedCentralGoogle Scholar
  36. McCann J, Peppé S (2003) Prosody in autism spectrum disorders: a critical review. Int J Lang Commun Disord 38:325–350.  https://doi.org/10.1080/1368282031000154204 CrossRefPubMedGoogle Scholar
  37. Milne E (2011) Increased intra-participant variability in children with autistic spectrum disorders: evidence from single-trial analysis of evoked EEG. Front Psychol 2:.  https://doi.org/10.3389/fpsyg.2011.00051
  38. Musacchia G, Sams M, Skoe E, Kraus N (2007) Musicians have enhanced subcortical auditory and audiovisual processing of speech and music. Proc Natl Acad Sci 104:15894–15898.  https://doi.org/10.1073/pnas.0701498104 CrossRefPubMedPubMedCentralGoogle Scholar
  39. Nelson SB, Valakh V (2015) Excitatory/inhibitory balance and circuit homeostasis in autism spectrum disorders. Neuron 87:684–698.  https://doi.org/10.1016/j.neuron.2015.07.033 CrossRefPubMedPubMedCentralGoogle Scholar
  40. Nomi JS, Uddin LQ (2015) Developmental changes in large-scale network connectivity in autism. NeuroImage Clin 7:732–741.  https://doi.org/10.1016/j.nicl.2015.02.024 CrossRefPubMedPubMedCentralGoogle Scholar
  41. Peñagarikano O, Abrahams BS, Herman EI et al (2011) Absence of CNTNAP2 leads to epilepsy, neuronal migration abnormalities, and core autism-related deficits. Cell 147:235–246.  https://doi.org/10.1016/j.cell.2011.08.040 CrossRefPubMedPubMedCentralGoogle Scholar
  42. Rosenhall U, Nordin V, Brantberg K, Gillberg C (2003) Autism and auditory brain stem responses. Ear Hear 24:206–214.  https://doi.org/10.1097/01.AUD.0000069326.11466.7E CrossRefPubMedGoogle Scholar
  43. Rossignol DA, Frye RE (2014) Evidence linking oxidative stress, mitochondrial dysfunction, and inflammation in the brain of individuals with autism. Front Physiol 5:.  https://doi.org/10.3389/fphys.2014.00150
  44. Russo NM, Skoe E, Trommer B et al (2008) Deficient brainstem encoding of pitch in children with autism spectrum disorders. Clin Neurophysiol Off J Int Fed Clin Neurophysiol 119:1720–1731.  https://doi.org/10.1016/j.clinph.2008.01.108 CrossRefGoogle Scholar
  45. Russo N, Nicol T, Trommer B et al (2009) Brainstem transcription of speech is disrupted in children with autism spectrum disorders. Dev Sci 12:557–567.  https://doi.org/10.1111/j.1467-7687.2008.00790.x CrossRefPubMedPubMedCentralGoogle Scholar
  46. Russo NM, Hornickel J, Nicol T et al (2010) Biological changes in auditory function following training in children with autism spectrum disorders. Behav Brain Funct BBF 6:60.  https://doi.org/10.1186/1744-9081-6-60 CrossRefPubMedGoogle Scholar
  47. Skoe E, Kraus N (2010) Auditory brainstem response to complex sounds: a tutorial. Ear Hear 31:302–324.  https://doi.org/10.1097/AUD.0b013e3181cdb272 CrossRefPubMedPubMedCentralGoogle Scholar
  48. Skoe E, Kraus N (2013) Musical training heightens auditory brainstem function during sensitive periods in development. Front Psychol  https://doi.org/10.3389/fpsyg.2013.00622 Google Scholar
  49. Skoe E, Krizman J, Kraus N (2013) The impoverished brain: disparities in maternal education affect the neural response to sound. J Neurosci Off J Soc Neurosci 33:17221–17231.  https://doi.org/10.1523/JNEUROSCI.2102-13.2013 CrossRefGoogle Scholar
  50. Skoe E, Krizman J, Anderson S, Kraus N (2015) Stability and plasticity of auditory brainstem function across the lifespan. Cereb Cortex N Y N 1991 25:1415–1426.  https://doi.org/10.1093/cercor/bht311 Google Scholar
  51. Song JH, Banai K, Kraus N (2008) Brainstem timing deficits in children with learning impairment may result from corticofugal origins. Audiol Neurootol 13:335–344.  https://doi.org/10.1159/000132689 CrossRefPubMedGoogle Scholar
  52. Supekar K, Uddin LQ, Khouzam A et al (2013) Brain hyper-connectivity in children with autism and its links to social deficits. Cell Rep 5:738–747.  https://doi.org/10.1016/j.celrep.2013.10.001 CrossRefPubMedPubMedCentralGoogle Scholar
  53. Takahashi T, Yoshimura Y, Hiraishi H et al (2016) Enhanced brain signal variability in children with autism spectrum disorder during early childhood. Hum Brain Mapp 37:1038–1050.  https://doi.org/10.1002/hbm.23089 CrossRefPubMedGoogle Scholar
  54. Thomas MSC, Davis R, Karmiloff-Smith A et al (2016) The over-pruning hypothesis of autism. Dev Sci 19:284–305.  https://doi.org/10.1111/desc.12303 CrossRefPubMedGoogle Scholar
  55. Tierney A, Kraus N (2013) The ability to move to a beat is linked to the consistency of neural responses to sound. J Neurosci Off J Soc Neurosci 33:14981–14988.  https://doi.org/10.1523/JNEUROSCI.0612-13.2013 CrossRefGoogle Scholar
  56. Vasa RA, Mostofsky SH, Ewen JB (2016) The Disrupted connectivity hypothesis of autism spectrum disorders: time for the next phase in research. Biol Psychiatry Cogn Neurosci Neuroimaging 1:245–252.  https://doi.org/10.1016/j.bpsc.2016.02.003 CrossRefPubMedPubMedCentralGoogle Scholar
  57. Wan CY, Schlaug G (2010) Music making as a tool for promoting brain plasticity across the life span. Neurosci Rev J Bringing Neurobiol Neurol Psychiatry 16:566–577.  https://doi.org/10.1177/1073858410377805 Google Scholar
  58. Weiss MW, Bidelman GM (2015) Listening to the brainstem: musicianship enhances intelligibility of subcortical representations for speech. J Neurosci Off J Soc Neurosci 35:1687–1691.  https://doi.org/10.1523/JNEUROSCI.3680-14.2015 CrossRefGoogle Scholar
  59. White-Schwoch T, Nicol T, Warrier CM, Abrams DA, Kraus N (2016) Individual differences in human auditory processing: insights from single-trial auditory midbrain activity in an animal model. Cereb Cortex 27(11):5095–5115Google Scholar
  60. Won H, Mah W, Kim E (2013) Autism spectrum disorder causes, mechanisms, and treatments: focus on neuronal synapses. Front Mol Neurosci 6:.  https://doi.org/10.3389/fnmol.2013.00019

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Sebastian Otto-Meyer
    • 1
    • 2
  • Jennifer Krizman
    • 1
    • 2
  • Travis White-Schwoch
    • 1
    • 2
  • Nina Kraus
    • 1
    • 2
    • 3
    • 4
    • 5
  1. 1.Auditory Neuroscience LaboratoryNorthwestern UniversityEvanstonUSA
  2. 2.Department of Communication SciencesNorthwestern UniversityEvanstonUSA
  3. 3.Institute for NeuroscienceNorthwestern UniversityEvanstonUSA
  4. 4.Department of Neurobiology and PhysiologyNorthwestern UniversityEvanstonUSA
  5. 5.Department of OtolaryngologyNorthwestern UniversityEvanstonUSA

Personalised recommendations