Experimental Brain Research

, Volume 235, Issue 12, pp 3709–3720 | Cite as

Development of finger force coordination in children

  • Sharon Shaklai
  • Aviva Mimouni-Bloch
  • Moran Levin
  • Jason Friedman
Research Article

Abstract

Coordination is often observed as body parts moving together. However, when producing force with multiple fingers, the optimal coordination is not to produce similar forces with each finger, but rather for each finger to correct mistakes of other fingers. In this study, we aim to determine whether and how this skill develops in children aged 4–12 years. We measured this sort of coordination using the uncontrolled manifold hypothesis (UCM). We recorded finger forces produced by 60 typically developing children aged between 4 and 12 years in a finger-pressing task. The children controlled the height of an object on a screen by the total amount of force they produced on force sensors. We found that the synergy index, a measure of the relationship between “good” and “bad” variance, increased linearly as a function of age. This improvement was achieved by a selective reduction in “bad” variance rather than an increase in “good” variance. We did not observe differences between males and females, and the synergy index was not able to predict outcomes of upper limb behavioral tests after controlling for age. As children develop between the ages of 4 and 12 years, their ability to produce negative covariation between their finger forces improves, likely related to their improved ability to perform dexterous tasks.

Keywords

Children Coordination Finger force Prehension Uncontrolled manifold 

References

  1. Aaron DH (2006) Pediatric hand therapy. In: Henderson A, Pehoski C (eds) Hand function in the child: foundations for remediation, 2nd edn. Elsevier Mosby, St Louis, pp 367–400Google Scholar
  2. Beagley SB, Reedman SE, Sakzewski L, Boyd RN (2016) Establishing Australian norms for the Jebsen Taylor test of hand function in typically developing children aged five to 10 years: a pilot study. Phys Occup Ther Pediatr 36:88–109. doi:10.3109/01942638.2015.1040571 CrossRefPubMedGoogle Scholar
  3. Beck S, Hallett M (2011) Surround inhibition in the motor system. Exp Brain Res 210:165–172. doi:10.1007/s00221-011-2610-6 CrossRefPubMedPubMedCentralGoogle Scholar
  4. Beenakker EAC, van der Hoeven JH, Fock JM, Maurits NM (2001) Reference values of maximum isometric muscle force obtained in 270 children aged 4–16 years by hand-held dynamometry. Neuromuscul Disord 11:441–446. doi:10.1016/S0960-8966(01)00193-6 CrossRefPubMedGoogle Scholar
  5. Black DP, Smith BA, Wu J, Ulrich BD (2007) Uncontrolled manifold analysis of segmental angle variability during walking: preadolescents with and without Down syndrome. Exp Brain Res 183:511–521. doi:10.1007/s00221-007-1066-1 CrossRefPubMedGoogle Scholar
  6. Case-Smith J (2006) Hand skill development in the context of infant’s play: birth to 2 years. In: Henderson A, Pehoski C (eds) Hand function in the child: foundations for remediation. Mosby Elsevier, St Louis, pp 117–141CrossRefGoogle Scholar
  7. Comuk-Balci N, Bayoglu B, Tekindal A et al (2016) Screening preschool children for fine motor skills: environmental influence. J Phys Ther Sci 28:1026–1031. doi:10.1589/jpts.28.1026 CrossRefPubMedPubMedCentralGoogle Scholar
  8. Conners CK (1997) Technical manual for the Conners’ rating scales—revised. Multi-Health Systems, New YorkGoogle Scholar
  9. Connolly K, Elliott J (1972) The evolution and ontogeny of hand function. In: Blurton Jones N (ed) Ethological studies of child behaviour. University Press, CambridgeGoogle Scholar
  10. Forssberg H (1999) Neural control of human motor development. Curr Opin Neurobiol 9:676–682. doi:10.1016/S0959-4388(99)00037-9 CrossRefPubMedGoogle Scholar
  11. Forssberg H, Eliasson A-C, Kinoshita H et al (1991) Development of human precision grip I: basic coordination of force. Exp Brain Res 85:451–457. doi:10.1007/BF00229422 CrossRefPubMedGoogle Scholar
  12. Forssberg H, Eliasson AC, Kinoshita H et al (1995) Development of human precision grip. IV. Tactile adaptation of isometric finger forces to the frictional condition. Exp Brain Res 104:323–330. doi:10.1007/BF00242017 CrossRefPubMedGoogle Scholar
  13. Friedman J (2014) Repeated measures (computer software). Zenodo. doi:10.5281/zenodo.10438
  14. Friedman J (2017) 3D printable sensor base for four PCB 208C01 force sensors for finger pressing experiments. Figshare. doi:10.6084/m9.figshare.4595326.v2
  15. Friedman J, Varadhan SKM, Zatsiorsky VM, Latash ML (2009) The sources of two components of variance: an example of multifinger cyclic force production tasks at different frequencies. Exp Brain Res 196:263–277. doi:10.1007/s00221-009-1846-x CrossRefPubMedPubMedCentralGoogle Scholar
  16. Gordon AM, Westling G, Cole KJ, Johansson RS (1993) Memory representations underlying motor commands used during manipulation of common and novel objects. J Neurophysiol 69:1789–1796PubMedGoogle Scholar
  17. Gorniak S, Zatsiorsky V, Latash M (2009) Hierarchical control of static prehension: II. Multi-digit synergies. Exp Brain Res 194:1–15. doi:10.1007/s00221-008-1663-7 CrossRefPubMedGoogle Scholar
  18. Jeannerod M (1981) Intersegmental coordination during reaching at natural visual objects. In: Long J, Baddeley A (eds) Attention and performance IX. Lawrence Erlbaum Associates, New Jersey, pp 153–169Google Scholar
  19. Jebsen RH, Taylor N, Trieschmann RB et al (1969) An objective and standardized test of hand function. Arch Phys Med Rehabil 50:311–319PubMedGoogle Scholar
  20. Johansson RS, Cole KJ (1992) Sensory-motor coordination during grasping and manipulative actions. Curr Opin Neurobiol 2:815–823. doi:10.1016/0959-4388(92)90139-C CrossRefPubMedGoogle Scholar
  21. Johansson RS, Flanagan JR (2009) Coding and use of tactile signals from the fingertips in object manipulation tasks. Nat Rev Neurosci 10:345–359. doi:10.1038/nrn2621 CrossRefPubMedGoogle Scholar
  22. Jongbloed-Pereboom M, Nijhuis-van der Sanden MWG, Steenbergen B (2013) Norm scores of the box and block test for children ages 3–10 years. Am J Occup Ther 67:312–318. doi:10.5014/ajot.2013.006643 CrossRefPubMedGoogle Scholar
  23. Kang N, Shinohara MZ, Latash ML (2004) Learning multi-finger synergies: an uncontrolled manifold analysis. Exp Brain Res 157:336–350. doi:10.1007/s00221-004-1850-0 CrossRefPubMedGoogle Scholar
  24. Kapur S, Zatsiorsky VM, Latash ML (2010) Age-related changes in the control of finger force vectors. J Appl Physiol 109:1827–1841. doi:10.1152/japplphysiol.00430.2010 CrossRefPubMedPubMedCentralGoogle Scholar
  25. Kilshaw D, Annett M (1983) Right- and left-hand skill I: effects of age, sex and hand preference showing superior skill in left-handers. Br J Psychol Lond Engl 1953 74(Pt 2):253–268Google Scholar
  26. Klous M, Danna-dos-Santos A, Latash M (2010) Multi-muscle synergies in a dual postural task: evidence for the principle of superposition. Exp Brain Res 202:457–471. doi:10.1007/s00221-009-2153-2 CrossRefPubMedPubMedCentralGoogle Scholar
  27. Konczak J, Borutta M, Topka H, Dichgans J (1995) The development of goal-directed reaching in infants: hand trajectory formation and joint torque control. Exp Brain Res 106:156–168. doi:10.1007/BF00241365 CrossRefPubMedGoogle Scholar
  28. Kuhtz-Buschbeck JP, Stolze H, Boczek-Funcke A et al (1998a) Kinematic analysis of prehension movements in children. Behav Brain Res 93:131–141. doi:10.1016/S0166-4328(97)00147-2 CrossRefPubMedGoogle Scholar
  29. Kuhtz-Buschbeck JP, Stolze H, Jöhnk K et al (1998b) Development of prehension movements in children: a kinematic study. Exp Brain Res 122:424–432. doi:10.1007/s002210050530 CrossRefPubMedGoogle Scholar
  30. Latash ML (2010) Motor synergies and the equilibrium-point hypothesis. Mot Control 14:294–322CrossRefGoogle Scholar
  31. Latash ML, Scholz JF, Danion F, Schöner G (2002a) Finger coordination during discrete and oscillatory force production tasks. Exp Brain Res 146:419–432. doi:10.1007/s00221-002-1196-4 CrossRefPubMedGoogle Scholar
  32. Latash ML, Scholz JP, Schöner G (2002b) Motor control strategies revealed in the structure of motor variability. Exerc Sport Sci Rev 30:26–31CrossRefPubMedGoogle Scholar
  33. Lemon RN (2008) Descending pathways in motor control. Annu Rev Neurosci 31:195–218. doi:10.1146/annurev.neuro.31.060407.125547 CrossRefPubMedGoogle Scholar
  34. Mathiowetz V, Federman S, Wiemer D (1985) Box and block test of manual dexterity: norms for 6–19 year olds. Can J Occup Ther 52:241–245. doi:10.1177/000841748505200505 CrossRefGoogle Scholar
  35. Olafsdottir H, Zhang W, Zatsiorsky VM, Latash ML (2007) Age-related changes in multifinger synergies in accurate moment of force production tasks. J Appl Physiol 102:1490–1501. doi:10.1152/japplphysiol.00966.2006 CrossRefPubMedPubMedCentralGoogle Scholar
  36. Paclet F, Ambike S, Zatsiorsky VM, Latash ML (2014) Enslaving in a serial chain: interactions between grip force and hand force in isometric tasks. Exp Brain Res 232:775–787. doi:10.1007/s00221-013-3787-7 CrossRefPubMedGoogle Scholar
  37. Park J, Jo HJ, Lewis MM et al (2013) Effects of Parkinson’s disease on optimization and structure of variance in multi-finger tasks. Exp Brain Res 231:51–63. doi:10.1007/s00221-013-3665-3 CrossRefPubMedPubMedCentralGoogle Scholar
  38. Rosseel Y (2012) lavaan: an R package for structural equation modeling. J Stat Softw 48:1–36. doi:10.18637/jss.v048.i02 CrossRefGoogle Scholar
  39. Schieber MH (1995) Muscular production of individuated finger movements: the roles of extrinsic finger muscles. J Neurosci 15:284–297PubMedGoogle Scholar
  40. Scholz J, Kang N, Patterson D, Latash M (2003) Uncontrolled manifold analysis of single trials during multi-finger force production by persons with and without Down syndrome. Exp Brain Res 153:45–58. doi:10.1007/s00221-003-1580-8 CrossRefPubMedGoogle Scholar
  41. Taylor N, Sand PL, Jebsen RH (1973) Evaluation of hand function in children. Arch Phys Med Rehabil 54:129–135PubMedGoogle Scholar
  42. Thomas JR, French KE (1985) Gender differences across age in motor performance: a meta-analysis. Psychol Bull 98:260–282. doi:10.1037/0033-2909.98.2.260 CrossRefPubMedGoogle Scholar
  43. Vollmer B, Forssberg H (2009) Development of grasping and object manipulation. In: Nowak DA, Hermsdörfer J (eds) Sensorimotor control of grasping: physiology and pathophysiology. Cambridge University Press, Cambridge, pp 235–249CrossRefGoogle Scholar
  44. Wu J, McKay S, Angulo-Barroso R (2009) Center of mass control and multi-segment coordination in children during quiet stance. Exp Brain Res 196:329–339. doi:10.1007/s00221-009-1852-z CrossRefPubMedGoogle Scholar
  45. Wu Y-H, Pazin N, Zatsiorsky VM, Latash ML (2012) Practicing elements versus practicing coordination: changes in the structure of variance. J Mot Behav 44:471–478. doi:10.1080/00222895.2012.740101 CrossRefPubMedPubMedCentralGoogle Scholar
  46. Wu Y-H, Pazin N, Zatsiorsky VM, Latash ML (2013) Improving finger coordination in young and elderly persons. Exp Brain Res 226:273–283. doi:10.1007/s00221-013-3433-4 CrossRefPubMedPubMedCentralGoogle Scholar
  47. Yang J-F, Scholz JP, Latash ML (2007) The role of kinematic redundancy in adaptation of reaching. Exp Brain Res 176:54–69. doi:10.1007/s00221-006-0602-8 CrossRefPubMedGoogle Scholar
  48. Zatsiorsky VM, Li Z-M, Latash ML (2000) Enslaving effects in multi-finger force production. Exp Brain Res 131:187–195. doi:10.1007/s002219900261 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Department of Child and Youth RehabilitationLoewenstein Rehabilitation HospitalRaananaIsrael
  2. 2.Sackler Faculty of MedicineTel Aviv UniversityTel AvivIsrael
  3. 3.Pediatric Neurology and Development UnitLoewenstein Rehabilitation HospitalRaananaIsrael
  4. 4.Department of Physical Therapy, School of Health Professions, Sackler Faculty of MedicineTel Aviv UniversityTel AvivIsrael
  5. 5.Sagol School of NeuroscienceTel Aviv UniversityTel AvivIsrael

Personalised recommendations