Advertisement

Experimental Brain Research

, Volume 235, Issue 10, pp 3049–3057 | Cite as

The influence of imagery capacity in motor performance improvement

  • Célia Ruffino
  • Charalambos Papaxanthis
  • Florent LebonEmail author
Research Article

Abstract

Motor imagery (MI) training improves motor performance, but the inter-individual variability of this improvement remains still unexplored. In this study, we tested the influence of imagery ability on the performance improvement following MI training. Twenty participants were randomly distributed into the MI or control group. They actually performed, at pre- and post-test sessions, a revisited version of the Nine Hole Peg Test, a speed-accuracy trade-off task, commonly used in clinics. Between the tests, the MI group mentally trained on the task (5 blocks of 10 trials), while the control group watched a non-emotional documentary. Before and during MI training, we tested the imagery ability of the MI group, by the revised version of Movement Imagery Questionnaire and by the estimation of vividness for the movement task at each block (subjective evaluation—SE). In the post-test, the MI group significantly decreased the movement duration by −12.1 ± 5.7% (P < 0.001), whereas the control group did not (−2.68 ± 5%, P = 0.68). For the MI group, the percentage of improvement was correlated neither to the MIQ-R nor to the SE reported after block 1. However, we observed an evolution of the SE during training, with a positive correlation between performance improvement and SE at block 4 (R = 0.61, P = 0.03) and at block 5 (R = 0.68, P = 0.04). The current study shows that motor performance may be positively influenced, whilst not predicted, by the capacity to form vivid movement images throughout the mental training. These findings are of interest for clinical interventions using MI as a complementary rehabilitation tool.

Keywords

Motor imagery Mental practice Motor performance improvement Imagery capacity 

Notes

Acknowledgements

This research received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors.

Compliance with ethical standards

Conflict of interest

The authors declare that there is no conflict of interest.

References

  1. Allami N, Paulignan Y, Brovelli A, Boussaoud D (2008) Visuo-motor learning with combination of different rates of motor imagery and physical practice. Exp Brain Res 184:105–113. doi: 10.1007/s00221-007-1086-x CrossRefPubMedGoogle Scholar
  2. Anuar N, Cumming J, Williams SE (2016) Effects of applying the PETTLEP model on vividness and ease of imaging movement. J Appl Sport Psychol 28:185–198. doi: 10.1080/10413200.2015.1099122 CrossRefGoogle Scholar
  3. Avanzino L, Giannini A, Tacchino A et al (2009) Motor imagery influences the execution of repetitive finger opposition movements. Neurosci Lett 466:11–15. doi: 10.1016/j.neulet.2009.09.036 CrossRefPubMedGoogle Scholar
  4. Avanzino L, Gueugneau N, Bisio A et al (2015) Motor cortical plasticity induced by motor learning through mental practice. Front Behav Neurosci. doi: 10.3389/fnbeh.2015.00105 Google Scholar
  5. Calmels C, Holmes P, Berthoumieux C, Singer RN (2004) The development of movement imagery vividness through a structured intervention in Softball. J Sport Behav 27:307–322Google Scholar
  6. Clark BC, Mahato NK, Nakazawa M et al (2015) The power of the mind: the cortex as a critical determinant of muscle strength/weakness. J Neurophysiol 112:3219–3226. doi: 10.1152/jn.00386.2014 CrossRefGoogle Scholar
  7. Decety J, Grèzes J (1999) Neural mechanisms subserving the perception of human actions. Trends Cogn Sci 3:172–178. doi: 10.1016/S1364-6613(99)01312-1 CrossRefPubMedGoogle Scholar
  8. Decety J, Jeannerod M, Prablanc C (1989) The timing of mentally represented actions. Behav Brain Res 34:35–42CrossRefPubMedGoogle Scholar
  9. Driskell JE, Copper C, Moran A (1994) Does mental practice enhance performance? J Appl Psychol 79:481–492. doi: 10.1037/0021-9010.79.4.481 CrossRefGoogle Scholar
  10. Facchini S, Muellbacher W, Battaglia F et al (2002) Focal enhancement of motor cortex excitability during motor imagery: a transcranial magnetic stimulation study. Acta Neurol Scand 105:146–151. doi: 10.1034/j.1600-0404.2002.1o004.x CrossRefPubMedGoogle Scholar
  11. Fadiga L, Buccino G, Craighero L et al (1998) Corticospinal excitability is specifically modulated by motor imagery: a magnetic stimulation study. Neuropsychologia 37:147–158. doi: 10.1016/S0028-3932(98)00089-X CrossRefGoogle Scholar
  12. Frank C, Land WM, Popp C, Schack T (2014) Mental representation and mental practice: experimental investigation on the functional links between motor memory and motor imagery. PLoS One 9:e95175. doi: 10.1371/journal.pone.0095175 CrossRefPubMedPubMedCentralGoogle Scholar
  13. Frank C, Land WM, Schack T (2015) Perceptual-cognitive changes during motor learning: the influence of mental and physical practice on mental representation, gaze behavior, and performance of a complex action. Front Psychol 6:1981. doi: 10.3389/fpsyg.2015.01981 PubMedGoogle Scholar
  14. Gandrey P, Paizis C, Karathanasis V et al (2013) Dominant vs. nondominant arm advantage in mentally simulated actions in right handers. J Neurophysiol 110:2887–2894. doi: 10.1152/jn.00123.2013 CrossRefPubMedGoogle Scholar
  15. Gentili RJ, Papaxanthis C (2015) Laterality effects in motor learning by mental practice in right-handers. Neuroscience 297:231–242. doi: 10.1016/j.neuroscience.2015.02.055 CrossRefPubMedGoogle Scholar
  16. Gentili R, Papaxanthis C, Pozzo T (2006) Improvement and generalization of arm motor performance through motor imagery practice. Neuroscience 137:761–772. doi: 10.1016/j.neuroscience.2005.10.013 CrossRefPubMedGoogle Scholar
  17. Gentili R, Han CE, Schweighofer N, Papaxanthis C (2010) Motor learning without doing: trial-by-trial improvement in motor performance during mental training. J Neurophysiol 104:774–783. doi: 10.1152/jn.00257.2010 CrossRefPubMedGoogle Scholar
  18. Goodbody S, Wolpert D (1998) Temporal and amplitude generalization in motor learning. J Neurophysiol 79:1825–1838PubMedGoogle Scholar
  19. Goss S, Hall C, Buckolz E, Fishburne G (1986) Imagery ability and the acquisition and retention of movements. Mem Cognit 14:469–477. doi: 10.3758/BF03202518 CrossRefPubMedGoogle Scholar
  20. Grosprêtre S, Lebon F, Papaxanthis C, Martin A (2016) New evidence of corticospinal network modulation induced by motor imagery. J Neurophysiol 115:1279–1288. doi: 10.1152/jn.00952.2015 CrossRefPubMedGoogle Scholar
  21. Gueugneau N, Papaxanthis C (2010) Time-of-day effects on the internal simulation of motor actions: psychophysical evidence from pointing movements with the dominant and non-dominant arm. Chronobiol Int 27:620–639. doi: 10.3109/07420521003664205 CrossRefPubMedGoogle Scholar
  22. Gueugneau N, Crognier L, Papaxanthis C (2008) The influence of eye movements on the temporal features of executed and imagined arm movements. Brain Res 1187:95–102. doi: 10.1016/j.brainres.2007.10.042 CrossRefPubMedGoogle Scholar
  23. Gueugneau N, Schweighofer N, Papaxanthis C et al (2016) Daily update of motor predictions by physical activity. Sci Rep 5:17933. doi: 10.1038/srep17933 CrossRefGoogle Scholar
  24. Guillot A, Collet C (2005) Duration of mentally simulated movement: a review. J Mot Behav 37:10–20. doi: 10.3200/JMBR.37.1.10-20 CrossRefPubMedGoogle Scholar
  25. Guillot A, Collet C, Nguyen VA et al (2008) Functional neuroanatomical networks associated with expertise in motor imagery. Neuroimage 41:1471–1483. doi: 10.1016/j.neuroimage.2008.03.042 CrossRefPubMedGoogle Scholar
  26. Guillot A, Tolleron C, Collet C (2010) Does motor imagery enhance stretching and flexibility? J Sports Sci 28:291–298. doi: 10.1080/02640410903473828 CrossRefPubMedGoogle Scholar
  27. Hall CR (1985) Individual differences in the mental practice and imagery of motor skill performance. Can J Appl Sport Sci 10:17S–21SPubMedGoogle Scholar
  28. Hall CR, Martin KA (1997) Measuring movement imagery abilities: a revision of the Movement Imagery Questionnaire. J Ment Imag 21:143–154Google Scholar
  29. Hétu S, Grégoire M, Saimpont A et al (2013) The neural network of motor imagery: an ALE meta-analysis. Neurosci Biobehav Rev 37:930–949. doi: 10.1016/j.neubiorev.2013.03.017 CrossRefPubMedGoogle Scholar
  30. Jackson PL, Lafleur MF, Malouin F et al (2001) Potential role of mental practice using motor imagery in neurologic rehabilitation. Arch Phys Med Rehabil 82:1133–1141. doi: 10.1053/apmr.2001.24286 CrossRefPubMedGoogle Scholar
  31. Jeannerod M (1994) The representing brain: neural correlates of motor intention and imagery. Behav Brain Sci 17:187. doi: 10.1017/S0140525X00034026 CrossRefGoogle Scholar
  32. Lebon F, Collet C, Guillot A (2010) Benefits of motor imagery training on muscle strength. J Strength Cond Res 24:1680–1687. doi: 10.1519/JSC.0b013e3181d8e936 CrossRefPubMedGoogle Scholar
  33. Lebon F, Byblow WD, Collet C et al (2012) The modulation of motor cortex excitability during motor imagery depends on imagery quality. Eur J Neurosci 35:323–331. doi: 10.1111/j.1460-9568.2011.07938.x CrossRefPubMedGoogle Scholar
  34. Lovell G, Collins D (2001) Speed of image manipulation, imagery ability and motor skill acquisition. Int J Sport Psychol 32:355–368Google Scholar
  35. Madan CR, Singhal A (2012) Motor imagery and higher-level cognition: four hurdles before research can sprint forward. Cogn Process 13:211–229. doi: 10.1007/s10339-012-0438-z CrossRefPubMedGoogle Scholar
  36. Malouin F, Richards CL (2010) Mental practice for relearning locomotor skills. Phys Ther 90:240–251. doi: 10.2522/ptj.20090029 CrossRefPubMedGoogle Scholar
  37. Malouin F, Jackson PL, Richards CL (2013) Towards the integration of mental practice in rehabilitation programs. A critical review. Front Hum Neurosci 7:576. doi: 10.3389/fnhum.2013.00576 CrossRefPubMedPubMedCentralGoogle Scholar
  38. McAvinue L, Robertson I (2008) Measuring motor imagery ability: a review. Eur J Cogn Psychol 20:232–251. doi: 10.1080/09541440701394624 CrossRefGoogle Scholar
  39. McAvinue L, Robertson I (2009) An evaluation of a movement imagery training scheme. Imagin Cognit Pers 29:99–114CrossRefGoogle Scholar
  40. Miall R, Wolpert D (1996) Forward models for physiological motor control. Neural Netw 9:1265–1279. doi: 10.1016/S0893-6080(96)00035-4 CrossRefPubMedGoogle Scholar
  41. Mizuguchi N, Umehara I, Nakata H, Kanosue K (2013) Modulation of corticospinal excitability dependent upon imagined force level. Exp Brain Res 230:243–249. doi: 10.1007/s00221-013-3649-3 CrossRefPubMedGoogle Scholar
  42. Papaxanthis C, Paizis C, White O et al (2012) The relation between geometry and time in mental actions. PLoS One. doi: 10.1371/journal.pone.0051191 PubMedPubMedCentralGoogle Scholar
  43. Ranganathan VK, Siemionow V, Liu JZ et al (2004) From mental power to muscle power—gaining strength by using the mind. Neuropsychologia 42:944–956. doi: 10.1016/j.neuropsychologia.2003.11.018 CrossRefPubMedGoogle Scholar
  44. Robin N, Dominique L, Toussaint L et al (2007) Effects of motor imagery training on service return accuracy in tennis: the role of imagery ability. Int J Sport Exerc Psychol 5:175–186. doi: 10.1080/1612197X.2007.9671818 CrossRefGoogle Scholar
  45. Rodgers W, Hall C, Buckolz E (1991) The effect of an imagery training program on imagery ability, imagery use, and figure skating performance. J Appl Sport Psychol 3:109–125. doi: 10.1080/10413209108406438 CrossRefGoogle Scholar
  46. Rossini PM, Rossi S, Pasqualetti P, Tecchio F (1999) Corticospinal excitability modulation to hand muscles during movement imagery. Cereb Cortex 9:161–167. doi: 10.1093/cercor/9.2.161 CrossRefPubMedGoogle Scholar
  47. Rozand V, Lebon F, Papaxanthis C, Lepers R (2015) Effect of mental fatigue on speed-accuracy trade-off. Neuroscience 297:219–230. doi: 10.1016/j.neuroscience.2015.03.066 CrossRefPubMedGoogle Scholar
  48. Rozand V, Lebon F, Stapley PJ et al (2016) A prolonged motor imagery session alter imagined and actual movement durations: potential implications for neurorehabilitation. Behav Brain Res 297:67–75. doi: 10.1016/j.bbr.2015.09.036 CrossRefPubMedGoogle Scholar
  49. Shadmehr R, Mussa-Ivaldi F (1994) Adaptive representation of dynamics during learning of a motor task. J Neurosci 14:3208–3224PubMedGoogle Scholar
  50. Shadmehr R, Smith MA, Krakauer JW (2010) Error correction, sensory prediction, and adaptation in motor control. Annu Rev Neurosci 33:89–108. doi: 10.1146/annurev-neuro-060909-153135 CrossRefPubMedGoogle Scholar
  51. Vergeer I, Roberts J (2006a) Movement and stretching imagery during flexibility training. J Sports Sci 24:197–208. doi: 10.1080/02640410500131811 CrossRefPubMedGoogle Scholar
  52. Vergeer I, Roberts J (2006b) Movement and stretching imagery during flexibility training. J Sports Sci 24:197–208. doi: 10.1080/02640410500131811 CrossRefPubMedGoogle Scholar
  53. Wakefield C, Smith D (2012) Perfecting practice: applying the PETTLEP model of motor imagery. J Sport Psychol Action 3:1–11CrossRefGoogle Scholar
  54. Watt AP, Spittle M, Morris T (2002) Evidence related to the evaluation of measures of sport imagery. J Sci Med Sport 5:29CrossRefGoogle Scholar
  55. Williams SE, Cooley SJ, Cumming J (2013) Layered stimulus response training improves motor imagery ability and movement execution. J Sport Exerc Psychol 35:60–71. doi: 10.1123/jsep.35.1.60 CrossRefPubMedGoogle Scholar
  56. Wolpert DM, Flanagan JR (2001) Motor prediction. Curr Biol 11:R729–R732. doi: 10.1016/S0960-9822(01)00432-8 CrossRefPubMedGoogle Scholar
  57. Wolpert D, Diedrichsen J, Flanagan JR (2011) Principles of sensorimotor learning. Nat Rev 12:739. doi: 10.1038/nrn3112 Google Scholar
  58. Yágüez L, Nagel D, Hoffman H, Canavan A (1998) A mental route to motor learning: improving trajectorial kinematics through imagery training. Behav Brain 90:95–106. doi: 10.1016/S0166-4328(97)00087-9 CrossRefGoogle Scholar
  59. Yahagi S, Kasai T (1999) Motor evoked potentials induced by motor imagery reveal a functional asymmetry of cortical motor control in left- and right-handed human subjects. Neurosci Lett 276:185–188. doi: 10.1016/S0304-3940(99)00823-X CrossRefPubMedGoogle Scholar
  60. Yue G, Cole KJ (1992) Strength increases from the motor program: comparison of training with maximal voluntary and imagined muscle contractions. J Neurophysiol 67:1114–1123PubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Célia Ruffino
    • 1
  • Charalambos Papaxanthis
    • 1
  • Florent Lebon
    • 1
    Email author
  1. 1.Cognition, Action et Plasticité Sensorimotrice (CAPS), INSERM UMR1093, UFR STAPSUniversité de Bourgogne Franche-ComtéDijonFrance

Personalised recommendations