Experimental Brain Research

, Volume 235, Issue 10, pp 3111–3127 | Cite as

The Shepard–Risset glissando: music that moves you

  • Rebecca A. MursicEmail author
  • Bernhard E. Riecke
  • Deborah Apthorp
  • Stephen Palmisano
Research Article


Sounds are thought to contribute to the perceptions of self-motion, often via higher-level, cognitive mechanisms. This study examined whether illusory self-motion (i.e. vection) could be induced by auditory metaphorical motion stimulation (without providing any spatialized or low-level sensory information consistent with self-motion). Five different types of auditory stimuli were presented in mono to our 20 blindfolded, stationary participants (via a loud speaker array): (1) an ascending Shepard–Risset glissando; (2) a descending Shepard–Risset glissando; (3) a combined Shepard–Risset glissando; (4) a combined-adjusted (loudness-controlled) Shepard–Risset glissando; and (5) a white-noise control stimulus. We found that auditory vection was consistently induced by all four Shepard–Risset glissandi compared to the white-noise control. This metaphorical auditory vection appeared similar in strength to the vection induced by the visual reference stimulus simulating vertical self-motion. Replicating past visual vection findings, we also found that individual differences in postural instability appeared to significantly predict auditory vection strength ratings. These findings are consistent with the notion that auditory contributions to self-motion perception may be predominantly due to higher-level cognitive factors.


Illusory self-motion Vection Auditory perception Shepard–Risset glissando Postural sway 



This research was conducted with the support of the Australian Government Research Training Program Scholarship awarded to RAM. It was also supported by a University of Wollongong, Faculty of Social Sciences, Near Miss Grant awarded to SP.

Supplementary material

Supplementary material 1 (MOV 11932 kb)

221_2017_5033_MOESM2_ESM.wav (5 mb)
Supplementary material 2 (WAV 5168 kb)
221_2017_5033_MOESM3_ESM.wav (5 mb)
Supplementary material 3 (WAV 5168 kb)


  1. Apthorp D, Nagle F, Palmisano S (2014) Chaos in balance: non-linear measures of postural control predict individual variation in visual illusions of motion. PLoS One 9(12):e113897. doi: 10.1371/journal.pone.0113897 CrossRefPubMedPubMedCentralGoogle Scholar
  2. Brandt T, Dichgans J, Koenig E (1973) Differential effects of central versus peripheral vision on egocentric and exocentric motion perception. Exp Brain Res 16:476–491. doi: 10.1007/BF00234474 CrossRefPubMedGoogle Scholar
  3. Butler JS, Smith ST, Campos JL, Bülthoff HH (2010) Bayesian integration of visual and vestibular signals for heading. J Vis 10(11):1–13. doi: 10.1167/10.11.23 CrossRefGoogle Scholar
  4. Deutsch D (1992) Some new pitch paradoxes and their implications. Philos Trans R Soc Lond B Biol Sci 336:391–397. doi: 10.1098/rstb.1992.0073 CrossRefPubMedGoogle Scholar
  5. Dodge R (1923) Thresholds of rotation. J Exp Psychol 6:107–137. doi: 10.1037/h0076105 CrossRefGoogle Scholar
  6. Eitan Z, Granot RY (2006) How music moves: musical parameters and listeners’ images of motion. Music Percept 23:221–247. doi: 10.1525/mp.2006.23.3.221 CrossRefGoogle Scholar
  7. Hedger S, Nusbaum H, Lescop O, Wallisch P, Hoeckner B (2013) Music can elicit a visual motion aftereffect. Atten Percept Psychophys 75:1039–1047. doi: 10.3758/s13414-013-0443-z CrossRefPubMedGoogle Scholar
  8. Hettinger LJ, Schmidt T, Jones DL, Keshavarz B (2014) Illusory self-motion in virtual environments. In: Hale KS, Stanney KM (eds) Handbook of virtual environments: design, implementation, and applications, 2nd edn. CRC Press, New York, pp 435–466Google Scholar
  9. Keshavarz B, Berti S (2014) Integration of sensory information precedes the sensation of vection: a combined behavioral and event-related brain potential (ERP) study. Behav Brain Res 259:131–136. doi: 10.1016/j.bbr.2013.10.045 CrossRefPubMedGoogle Scholar
  10. Keshavarz B, Hettinger LJ, Vena D, Campos JL (2014) Combined effects of auditory and visual cues on the perception of vection. Exp Brain Res 232:827–836. doi: 10.1007/s00221-013-3793-9 CrossRefPubMedGoogle Scholar
  11. Keshavarz B, Campos JL, Berti S (2015) Vection lies in the brain of the beholder: EEG parameters as an objective measurement of vection. Front Psychol 6:1581. doi: 10.3389/fpsyg.2015.01581 PubMedPubMedCentralGoogle Scholar
  12. Keshavarz B, Speck M, Haycock B, Berti S (2017) Effect of different display types on vection and its interaction with motion direction and field dependence. iPerception 8(3):1–18. doi: 10.1177/2041669517707768 Google Scholar
  13. Lackner JR (1977) Induction of illusory self-rotation and nystagmus by a rotating sound-field. Aviat Space Environ Med 48:129–131PubMedGoogle Scholar
  14. Larsson P, Västfjäll D, Kleiner M (2004) Perception of self-motion and presence in auditory virtual environments. Proceedings of the seventh annual workshop of presence, Valencia, Spain 2004, pp 252–258.
  15. Lepecq JC, Giannopulu I, Baudonniere PM (1995) Cognitive effects on visually induced body motion in children. Perception 24(4):435–449. doi: 10.1068/p240435 CrossRefPubMedGoogle Scholar
  16. Mast FW, Berthoz A, Kosslyn SM (2016) Mental imagery of visual motion modifies the perception of roll-vection stimulation. Perception 30(8):945–957CrossRefGoogle Scholar
  17. Neuhoff JG, McBeath MK (1996) The Doppler illusion: the influence of dynamic intensity change on perceived pitch. J Exp Pyschol Hum Percept Perform 22(4):970–985. doi: 10.1037/0096-1523.22.4.970 CrossRefGoogle Scholar
  18. Ogawa M, Seno T (2014) Vection is modulated by the semantic meaning of stimuli and experimental instructions. Perception 43(7):605–615CrossRefPubMedGoogle Scholar
  19. Olson HF (1972) The measurement of loudness. Audio 25(2):18–22Google Scholar
  20. Orini M, Laguna P, Mainardi LT, Bailón R (2012) Influence of music emotional valence on cardio-respiratory coupling. In: The twelfth international workshop on biosignal interpretation, Como, ItalyGoogle Scholar
  21. Palmisano S, Chan AYC (2004) Jitter and size effects on vection are immune to experimental instructions and demands. Perception 33:987–1000. doi: 10.1068/p5242 CrossRefPubMedGoogle Scholar
  22. Palmisano S, Apthorp D, Seno T, Stapley PJ (2014) Spontaneous postural sway predicts the strengths of smooth vection. Exp Brain Res 232(4):185–1191. doi: 10.1007/s00221-014-3835-y CrossRefGoogle Scholar
  23. Palmisano S, Allison R, Schira M, Barry RJ (2015) Future challenges for vection research: definitions, functional significance, measures and neural bases. Front Psychol 6:1–15. doi: 10.3389/fpsyg.2015.00193/full CrossRefGoogle Scholar
  24. Palmisano S, Barry RJ, De Blasio FM, Fogarty JS (2016) Identifying objective EEG based markers of linear vection in depth. Front Psychol 7:1205. doi: 10.3389/fpsyg.2016.01205 CrossRefPubMedPubMedCentralGoogle Scholar
  25. Pigeon S (2013) Shepard madness: Binaural Shepard tone generator. My noise. Accessed 20 July 17
  26. Plack CJ, Oxenham AJ, Fay RR (2006) Pitch: neural coding and perception. Springer, New YorkGoogle Scholar
  27. Purves D, Augustine GJ, Fitzpatrick D et al (2001) Neuroscience, 2nd edn. Sinauer Associates, SunderlandGoogle Scholar
  28. Riecke BE (2009) Cognitive and higher-level contributions to illusory self-motion perception (“vection”): does the possibility of actual motion affect vection. Jpn J Psychon Sci 28(1):135–139. doi: 10.14947/psychono.KJ00005878681 Google Scholar
  29. Riecke BE (2010) Compelling self-motion through virtual environments without actual self-motion—using self-motion illusions (“vection”) to improve user experience in VR. In: Kim J (ed) Virtual reality. InTech, Rijeka, Croatia, pp 149–176. doi: 10.5772/13150 Google Scholar
  30. Riecke BE, Västfjäll D, Larsson P, Schulte-Pelkum J (2005) Top-down and multi-modal influences on self-motion perception in virtual reality. In: 11th International conference on Human-Computer Interaction (HCI International 2005). Erlbaum, Mahwah, NJ, USA, pp 1–10Google Scholar
  31. Riecke BE, Schulte-Pelkum J, Avraamides MN, Von Der Heyde M (2006) Cognitive factors can influence self-motion perception (vection) in virtual reality. ACM Trans Appl Percept 3:194–216. doi: 10.1145/1498700.1498701 CrossRefGoogle Scholar
  32. Riecke BE, Väljamäe A, Schulte-Pelkum J (2009) Moving sounds enhance the visually induced self-motion illusion (circular vection) in virtual reality. ACM Trans Appl Percept 6:1–26. doi: 10.1145/1498700.1498701 Google Scholar
  33. Seno T, Fukuda H (2012) Stimulus meaning alter illusory self-motion (vection)—experimental examination of the train illusion. See Perceiving 25:631–645. doi: 10.1163/18784763-00002394 CrossRefGoogle Scholar
  34. Seno T, Hasuo E, Ito H, Nakajima Y (2012a) Perceptually plausible sounds facilitate visually induced self-motion perception (vection). Perception 41:577–593. doi: 10.1068/p7184 CrossRefPubMedGoogle Scholar
  35. Seno T, Ito H, Sunaga S (2012b) Vection can be induced in the absence of explicit motion stimuli. Exp Brain Res 219:235–244. doi: 10.1007/s00221-012-3083-y CrossRefPubMedGoogle Scholar
  36. Seno T (2013) Music modulates the strength of vection. Psychology 4(7):566–568CrossRefGoogle Scholar
  37. Shepard RN (1964) Circularity in judgments of relative pitch. J Acoust Soc Am 36:2346–2353CrossRefGoogle Scholar
  38. Shimizu Y, Umeda M, Mano H, Aoki I, Higushi T, Tanaka C (2007) Neuronal response to Shepard’s tones. An auditory fMRI study using multifractal analysis. Brain Res 1186:113–123. doi: 10.1016/j.brainres.2007.09.097 CrossRefPubMedGoogle Scholar
  39. Stoffregen TA, Pagulayan RJ, Bardy BG, Hettinger LJ (2000) Modulating postural control to facilitate visual performance. Hum Mov Sci 19:203–220. doi: 10.1016/S0167-9457(00)00009-9 CrossRefGoogle Scholar
  40. Väljamäe A (2009) Auditorily-induced illusory self-motion: a review. Brain Res Rev 61:240–255. doi: 10.1016/j.brainresrev.2009.07.001 CrossRefPubMedGoogle Scholar
  41. Väljamäe A, Sell S (2014) The influence of imagery vividness on cognitive and perceptual cues in circular auditorily-induced vection. Front Psychol 5:1–8. doi: 10.3389/fpsyg.2014.01362 CrossRefGoogle Scholar
  42. Väljamäe A, Larsson P, Västfjäll D, Kleiner M (2004) Auditory presence, individualized head-related transfer functions, and illusory ego-motion in virtual environments. In: Proceedings of the seventh annual workshop of presence, Valencia, Spain, pp 141–147Google Scholar
  43. Väljamäe A, Larsson P, Västfjäll D, Kleiner M (2005) Traveling without moving: auditory scene cues for translational self-motion. In: Proceedings of the eleventh International conference on auditory display, Limerick, Ireland, pp 1–8Google Scholar
  44. Väljamäe A, Larsson P, Västfjäll D, Kleiner M (2008) Sound representing self-motion in virtual environments enhances linear vection. Presence Teleoper Virtual Environ 17:43–56. doi: 10.1162/pres.17.1.43 CrossRefGoogle Scholar
  45. Vernooij E, Orcalli A, Fabbro F, Crescentini C (2016) Listening to the Shepard–Risset glissando: the relationship between emotional response, disruption of equilibrium, and personality. Front Psychol 7(300):1–10. doi: 10.3389/fpsyg.2016.00300 Google Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Rebecca A. Mursic
    • 1
    Email author
  • Bernhard E. Riecke
    • 2
  • Deborah Apthorp
    • 3
    • 4
  • Stephen Palmisano
    • 1
  1. 1.School of PsychologyUniversity of WollongongWollongongAustralia
  2. 2.School of Interactive Arts and Technology (SIAT)Simon Fraser UniversitySurreyCanada
  3. 3.Research School of Psychology, College of Medicine, Biology and EnvironmentAustralian National UniversityCanberraAustralia
  4. 4.Research School of Computer Science, College of Engineering and Computer ScienceAustralian National UniversityCanberraAustralia

Personalised recommendations