Experimental Brain Research

, Volume 235, Issue 10, pp 2971–2981 | Cite as

Atrophic degeneration of cerebellum impairs both the reactive and the proactive control of movement in the stop signal paradigm

  • Giusy Olivito
  • Emiliano Brunamonti
  • Silvia Clausi
  • Pierpaolo Pani
  • Francesca R. Chiricozzi
  • Margherita Giamundo
  • Marco Molinari
  • Maria Leggio
  • Stefano Ferraina
Research Article

Abstract

The cognitive control of movement suppression, including performance monitoring, is one of the core properties of the executive system. A complex cortical and subcortical network involving cerebral cortex, thalamus, subthalamus, and basal ganglia has been regarded as the neural substrate of inhibition of programmed movements. Using the countermanding task, a suitable tool to explore behavioral components of movement suppression, the contribution of the cerebellum in the proactive control and monitoring of voluntary action has been recently described in patients affected by focal lesions involving in particular the cerebellar dentate nucleus. Here, we evaluated the performance on the countermanding task in a group of patients with cerebellar degeneration, in which the cerebellar cortex was diffusely affected, and showed that they display additionally a longer latency in countermanding engaged movements. Overall, the present data confirm the role of the cerebellum in executive control of action inhibition by extending the contribution to reactive motor suppression.

Keywords

Inhibition Cortical cerebellar degeneration Stop signal reaction time Movement generation Basal ganglia 

Notes

Acknowledgements

This study was supported by the Sapienza University grants (to SF and to ML, in part), Ministry of Health (Grant Number RF-2011-02348213) to MM and (Grant Number GR-2013-02354888) to SC.

References

  1. Alexander GE, Crutcher MD (1990) Functional architecture of basal ganglia circuits: neural substrates of parallel processing. Trends Neurosci 13:266–271CrossRefPubMedGoogle Scholar
  2. Appollonio IM, Grafman J, Schwartz V, Massaquoi S, Hallett M (1993) Memory in patients with cerebellar degeneration. Neurology 43:1536–1544CrossRefPubMedGoogle Scholar
  3. Aron AR, Poldrack RA (2006) Cortical and subcortical contributions to Stop signal response inhibition: role of the subthalamic nucleus. J Neurosci 26:2424–2433CrossRefPubMedGoogle Scholar
  4. Aron A, Robbins T, Poldrack R (2004) Inhibition and the right inferior frontal cortex. Trends Cogn Sci 8:170–177CrossRefPubMedGoogle Scholar
  5. Aron AR, Poldrack RA, Wise SP (2009) Cognition: basal ganglia role. In: Squire LR (ed) Encyclopedia of Neuroscience. Academic Press, Oxford, pp 1069–1077CrossRefGoogle Scholar
  6. Band GP, van der Molen MW, Logan GD (2003) Horse-race model simulations of the stop-signal procedure. Acta Psychol 112:105–142CrossRefGoogle Scholar
  7. Barbas H, García-Cabezas MÁ (2016) How the prefrontal executive got its stripes. Curr Opin Neurobiol 40:125–134CrossRefPubMedGoogle Scholar
  8. Blakemore SJ, Frith CD, Wolpert DM (2001) The cerebellum is involved in predicting the sensory consequences of action. NeuroReport 12:1879–1884CrossRefPubMedGoogle Scholar
  9. Borkowsky JG, Benton AL, Spreen O (1967) Word fluency and brain-damage. Neuropsychologia 5:135–140CrossRefGoogle Scholar
  10. Bostan AC, Dum RP, Strick PL (2010) The basal ganglia communicate with the cerebellum. Proc Natl Acad Sci U S A 107:8452–8456CrossRefPubMedPubMedCentralGoogle Scholar
  11. Bostan AC, Dum RP, Strick PL (2013) Cerebellar networks with the cerebral cortex and basal ganglia. Trends Cogn Sci 17:241–254CrossRefPubMedPubMedCentralGoogle Scholar
  12. Brodal P, Brodal A (1981) The olivocerebellar projection in the monkey. Experimental studies with the method of retrograde tracing of horseradish peroxidase. J Comp Neurol 201:375–393CrossRefPubMedGoogle Scholar
  13. Brunamonti E, Genovesio A, Carbè K, Ferraina S (2011a) Gaze modulates non-propositional reasoning: further evidence for spatial representation of reasoning premises. Neuroscience 173:110–115CrossRefPubMedGoogle Scholar
  14. Brunamonti E, Pani P, Papazachariadis O, Onorati P, Albertini G, Ferraina S (2011b) Cognitive control of movement in Down syndrome. Res Dev Disabil 32:1792–1797CrossRefPubMedGoogle Scholar
  15. Brunamonti E, Ferraina S, Paré M (2012) Controlled movement processing: evidence for a common inhibitory control of finger, wrist, and arm movements. Neuroscience 215:69–78CrossRefPubMedGoogle Scholar
  16. Brunamonti E, Chiricozzi FR, Clausi S, Olivito G, Giusti MA, Molinari M, Ferraina S, Leggio M (2014) Cerebellar damage impairs executive control and monitoring of movement generation. PLoS ONE 9:e85997CrossRefPubMedPubMedCentralGoogle Scholar
  17. Caligiore D, Pezzulo G, Baldassarre G, Bostan AC, Strick PL, Doya K, Helmich RC, Dirkx M, Houk J, Jörntell H, Lago-Rodriguez A, Galea JM, Miall RC, Popa T, Kishore A, Verschure PF, Zucca R, Herreros I (2017) Consensus paper: towards a systems-level view of cerebellar function: the interplay between cerebellum, basal ganglia, and cortex. Cerebellum 16:203–229CrossRefPubMedGoogle Scholar
  18. Carlesimo GA, Marfia GA, Loasses A, Caltagirone C (1996) Perceptual and conceptual components in implicit and explicit stem completion. Neuropsychologia 34:785–792CrossRefPubMedGoogle Scholar
  19. Chevrier A, Schachar RJ (2010) Error detection in the stop signal task. Neuroimage 53:664–673CrossRefPubMedGoogle Scholar
  20. Chopra R, Shakkottai VG (2014) Translating cerebellar Purkinje neuron physiology to progress in dominantly inherited ataxia. Futur Neurol 9:187–196CrossRefGoogle Scholar
  21. Corsi PM (1972) Human memory and the medial temporal regions of the brain. Diss Abst Int 34:891Google Scholar
  22. Doya K (2000) Complementary roles of basal ganglia and cerebellum in learning and motor control. Curr Opin Neurobiol 10:732–739CrossRefPubMedGoogle Scholar
  23. Dutilh G, Vandekerckhove J, Forstmann BU, Keuleers E, Brysbaert M, Wagenmakers EJ (2012) Testing theories of post-error slowing. Atten Percept Psychophys 74:454–465CrossRefPubMedGoogle Scholar
  24. Gainotti G, Miceli G, Caltagirone C (1977) Constructional apraxia in left brain-damaged patients: a planning disorder? Cortex 13:109–118CrossRefPubMedGoogle Scholar
  25. Ghajar J, Ivry RB (2009) The predictive brain state: asynchrony in disorders of attention? Neuroscientist 15:232–242CrossRefPubMedGoogle Scholar
  26. Ide JS, Li CS (2011) A cerebellar thalamic cortical circuit for error-related cognitive control. Neuroimage 54:455–464CrossRefPubMedGoogle Scholar
  27. Ishikawa T, Tomatsu S, Izawa J, Kakei S (2016) The cerebro-cerebellum: could it be loci of forward models? Neurosci Res 104:72–79CrossRefPubMedGoogle Scholar
  28. Ivry RB, Spencer RM (2004) Evaluating the role of the cerebellum in temporal processing: beware of the null hypothesis. Brain 127:E13CrossRefPubMedGoogle Scholar
  29. Kunimatsu J, Tomoki W, Tanaka M (2016) Implications of lateral cerebellum in proactive control of saccades. J Neurosci 36:7066–7074CrossRefPubMedGoogle Scholar
  30. Leggio M, Molinari M (2015) Cerebellar sequencing: a trick for predicting the future. Cerebellum 14:35–38CrossRefPubMedGoogle Scholar
  31. Levitt H (1970) Transformed up-down methods in psychoacoustics. J Acoust Soc Am 49:467–477CrossRefGoogle Scholar
  32. Li CS, Huang C, Yan P, Paliwal P, Constable RT, Sinha R (2008) Neural correlates of post-error slowing during a stop signal task: a functional magnetic resonance imaging study. J Cogn Neurosci 20:1021–1029CrossRefPubMedPubMedCentralGoogle Scholar
  33. Logan GD (1994) On the ability to inhibit thought and action: a users’guide to the stop signal paradigm. In: Dagenbach D, Carr TH (eds) Inhibitory processes in attention, memory, and language. Academic Press, San Diego, pp 189–239Google Scholar
  34. Logan GD, Yamaguchi M, Schall JD, Palmeri TJ (2015) Inhibitory control in mind and brain 2.0: blocked-input models of saccadic countermanding. Psychol Rev 122:115–147CrossRefPubMedPubMedCentralGoogle Scholar
  35. Ma N, Yu AJ (2015) Statistical learning and adaptive decision-making underlie human response time variability in inhibitory control. Front Psychol 6:1046CrossRefPubMedPubMedCentralGoogle Scholar
  36. Marcos E, Pani P, Brunamonti E, Deco G, Ferraina S, Verschure P (2013) Neural variability in premotor cortex is modulated by trial history and predicts behavioral performance. Neuron 78:249–255CrossRefPubMedGoogle Scholar
  37. Mattia M, Pani P, Mirabella G, Costa S, Del Giudice P, Ferraina S (2013) Heterogeneous attractor cell assemblies for motor planning in premotor cortex. J Neurosci 33:11155–11168CrossRefPubMedPubMedCentralGoogle Scholar
  38. Matzke D, Love J, Wiecki TV, Brown SD, Logan GD, Wagenmakers EJ (2013) Release the BEESTS: Bayesian estimation of ex-Gaussian STop-signal reaction time distributions. Front Psychol 4:918CrossRefPubMedPubMedCentralGoogle Scholar
  39. Matzke D, Love J, Heathcote A (2017) A Bayesian approach for estimating the probability of trigger failures in the stop-signal paradigm. Behav Res Methods 49:267–281CrossRefPubMedGoogle Scholar
  40. Middleton FA, Strick PL (2001) Cerebellar projections to the prefrontal cortex of the primate. J Neurosci 21:700–712PubMedGoogle Scholar
  41. Mink JW (1996) The basal ganglia: focused selection and inhibition of competing motor programs. Progr Neurobiol 50:381–425CrossRefGoogle Scholar
  42. Mione V, Canterini S, Brunamonti E, Pani P, Donno F, Fiorenza MT, Ferraina S (2015) Both the COMT Val158Met single-nucleotide polymorphism and sex-dependent differences influence response inhibition. Front Behav Neurosci 9:127CrossRefPubMedPubMedCentralGoogle Scholar
  43. Mirabella G, Pani P, Paré M, Ferraina S (2006) Inhibitory control of reaching movements in humans. Exp Brain Res 174:240–255CrossRefPubMedGoogle Scholar
  44. Mirabella G, Pani P, Ferraina S (2011) Neural correlates of cognitive control of reaching movements in the dorsal premotor cortex of rhesus monkeys. J Neurophysiol 106:1454–1466CrossRefPubMedGoogle Scholar
  45. Moberget T, Hilland E, Andersson S, Lundar T, Due-Tønnessen BJ, Heldal A, Ivry RB, Endestad T (2016) Patients with focal cerebellar lesions show reduced auditory cortex activation during silent reading. Brain Lang 161:18–27CrossRefPubMedGoogle Scholar
  46. Molinari M, Chiricozzi FR, Clausi S, Tedesco AM, De Lisa M, Leggio MG (2008) Cerebellum and detection of sequences, from perception to cognition. Cerebellum 7:611–615CrossRefPubMedGoogle Scholar
  47. Molinari M, Restuccia D, Leggio MG (2009) State estimation, response prediction, and cerebellar sensory processing for behavioral control. Cerebellum 8:399–402CrossRefPubMedGoogle Scholar
  48. Montanari R, Giamundo M, Brunamonti E, Ferraina S, Pani P (2017) Visual salience of the stop-signal affects movement suppression process. Exp Brain Res. doi: 10.1007/s00221-017-4961-0 PubMedGoogle Scholar
  49. Nambu A, Tokuno H, Takada M (2002) Functional significance of the cortico-subthalamo-pallidal ‘hyperdirect’ pathway. Neurosci Res 43:111–117CrossRefPubMedGoogle Scholar
  50. Nelson MJ, Boucher L, Logan GD, Palmeri TJ, Schall JD (2010) Non independent and non stationary response times in stopping and stepping saccade tasks. Atten Percept Psychophys 72:1913–1929CrossRefPubMedPubMedCentralGoogle Scholar
  51. Notebaert W, Houtman F, Opstal FV, Gevers W, Fias W, Verguts T (2009) Post-error slowing: an orienting account. Cognition 111:275–279CrossRefPubMedGoogle Scholar
  52. Pani P, Di Bello F, Brunamonti E, D’Andrea V, Papazachariadis O, Ferraina S (2014) Alpha- and beta-band oscillations subserve different processes in reactive control of limb movements. Front Behav Neurosci 8:383CrossRefPubMedPubMedCentralGoogle Scholar
  53. Peterburs J, Desmond JE (2016) The role of the human cerebellum in performance monitoring. Curr Opin Neurobiol 40:38–44CrossRefPubMedGoogle Scholar
  54. Peterburs J, Thürling M, Rustemeier M, Göricke S, Suchan B, Timmann D, Bellebaum C (2015) A cerebellar role in performance monitoring—evidence from EEG and voxel-based morphometry in patients with cerebellar degenerative disease. Neuropsychologia 68:139–147CrossRefPubMedGoogle Scholar
  55. Prevosto V, Sommer MA (2013) Cognitive control of movement via the cerebellar-recipient thalamus. Front Syst Neurosci 7:56CrossRefPubMedPubMedCentralGoogle Scholar
  56. Raman IM, Bean BP (1999) Ionic currents underlying spontaneous action potentials in isolated cerebellar Purkinje neurons. J Neurosci 19:1663–1674PubMedGoogle Scholar
  57. Ramnani N (2006) The primate cortico-cerebellar system: anatomy and function. Nat Rev Neurosci 7:511–522CrossRefPubMedGoogle Scholar
  58. Raven JC (1949) Sets A, Ab, B: board and book forms. Progressive matrices. Lewis, LondonGoogle Scholar
  59. Rey A (1958) L’examen clinique en psychologie. Presses Universiteries de France, ParisGoogle Scholar
  60. Sokolov AA, Miall RC, Ivry RB (2017) The Cerebellum: adaptive prediction for movement and cognition. Trends Cogn Sci 21:313–332CrossRefPubMedGoogle Scholar
  61. Strick PL, Dum RP, Fiez JA (2009) Cerebellum and nonmotor function. Annu Rev Neurosci 32:413–443CrossRefPubMedGoogle Scholar
  62. Swenson RS (2006) Review of clinical and functional neuroscience. In: Holmes GL (ed) Educational review manual in neurology. Castle Connolly Graduate Medical Publishing, New YorkGoogle Scholar
  63. Tanaka H, Harada M, Arai M, Hirata K (2003) Cognitive dysfunction in cortical cerebellar atrophy correlates with impairment of the inhibitory system. Neuropsychobiology 47:206–211CrossRefPubMedGoogle Scholar
  64. Tedesco AM, Chiricozzi FR, Clausi S, Lupo M, Molinari M, Leggio MG (2011) The cerebellar cognitive profile. Brain 134:3672–3686CrossRefPubMedGoogle Scholar
  65. Verbruggen F, Logan GD (2008) Response inhibition in the stop signal paradigm. Trends Cogn Sci 12:418–424CrossRefPubMedPubMedCentralGoogle Scholar
  66. Verbruggen F, Logan GD (2009) Proactive adjustments of response strategies in the stop-signal paradigm. J Exp Psychol Hum Percept Perform 35:835–854CrossRefPubMedPubMedCentralGoogle Scholar
  67. Villa G, Gainotti G, De Bonis C, Marra C (1990) Double dissociation between temporal and spatial pattern processing in patients with frontal and parietal damage. Cortex 26:399–407CrossRefPubMedGoogle Scholar
  68. Wolpert DM, Miall RC, Kawato M (1998) Internal models in the cerebellum. Trends Cogn Sci 2:338–347CrossRefPubMedGoogle Scholar
  69. Zar J (2009) Biostatistical analysis, 4th edn. Prentice-Hall, DelhiGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Giusy Olivito
    • 1
    • 2
  • Emiliano Brunamonti
    • 3
  • Silvia Clausi
    • 1
    • 4
  • Pierpaolo Pani
    • 3
  • Francesca R. Chiricozzi
    • 1
    • 4
  • Margherita Giamundo
    • 3
    • 6
  • Marco Molinari
    • 5
  • Maria Leggio
    • 1
    • 4
  • Stefano Ferraina
    • 3
  1. 1.Ataxia Research LabIRCCS Santa Lucia FoundationRomeItaly
  2. 2.Neuroimaging LaboratoryIRCCS Santa Lucia FoundationRomeItaly
  3. 3.Department of Physiology and PharmacologySapienza University of RomeRomeItaly
  4. 4.Department of PsychologySapienza University of RomeRomeItaly
  5. 5.Robotic Neurorehabilitation Lab, Neurorehabilitation 1 and Spinal CenterIRCCS Santa Lucia FoundationRomeItaly
  6. 6.PhD Program in Behavioral NeuroscienceSapienza University of RomeRomeItaly

Personalised recommendations