Experimental Brain Research

, Volume 235, Issue 9, pp 2777–2786 | Cite as

Subcortical brain atrophy in Gulf War Illness

  • Peka Christova
  • Lisa M. James
  • Brian E. Engdahl
  • Scott M. Lewis
  • Adam F. Carpenter
  • Apostolos P. Georgopoulos
Research Article

Abstract

Gulf War Illness (GWI) is a multisystem disorder that has affected a substantial number of veterans who served in the 1990–1991 Gulf War. The brain is prominently affected, as manifested by the presence of neurological, cognitive and mood symptoms. Although brain dysfunction in GWI has been well documented (EBioMedicine 12:127–32, 2016), abnormalities in brain structure have been debated. Here we report a substantial (~10%) subcortical brain atrophy in GWI comprising mainly the brainstem, cerebellum and thalamus, and, to a lesser extent, basal ganglia, amygdala and diencephalon. The highest atrophy was observed in the brainstem, followed by left cerebellum and right thalamus, then by right cerebellum and left thalamus. These findings indicate graded atrophy of regions anatomically connected through the brainstem via the crossed superior cerebellar peduncle (left cerebellum → right thalamus, right cerebellum → left thalamus). This distribution of atrophy, together with the observed systematic reduction in volume of other subcortical areas (basal ganglia, amygdala and diencephalon), resemble the distribution of atrophy seen in toxic encephalopathy (Am J Neuroradiol 13:747–760, 1992) caused by a variety of substances, including organic solvents. Given the potential exposure of Gulf War veterans to “a wide range of biological and chemical agents including sand, smoke from oil-well fires, paints, solvents, insecticides, petroleum fuels and their combustion products, organophosphate nerve agents, pyridostigmine bromide, …” (Institute of Medicine National Research Council. Gulf War and Health: Volume 1. Depleted uranium, pyridostigmine bromide, sarin, and vaccines. National Academies Press, Washington DC, 2000), it is reasonable to suppose that such exposures, alone or in combination, could underlie the subcortical atrophy observed.

Keywords

Gulf War Illness Brain atrophy Brainstem Cerebellum Thalamus Toxic encephalopathy 

References

  1. Abdel-Rahman A, Shetty AK, Abou-Donia MB (2002) Disruption of the blood–brain barrier and neuronal cell death in cingulate cortex, dentate gyrus, thalamus, and hypothalamus in a rat model of Gulf-War syndrome. Neurobiol Dis 10:306–326CrossRefPubMedGoogle Scholar
  2. Abdel-Rahman A, Abou-Donia SM, El-Masry EM, Shetty AK, Abou-Donia MB (2004) Stress and combined exposure to low doses of pyridostigmine bromide, deet, and permethrin produce neurochemical and neuropathological alterations in cerebral cortex, hippocampus, and cerebellum. J Toxicol Environ Health A 67:163–192CrossRefPubMedGoogle Scholar
  3. Bermel RA, Bakshi R (2006) The measurement and clinical relevance of brain atrophy in multiple sclerosis. Lancet Neurol 5:158–170CrossRefPubMedGoogle Scholar
  4. Blake DD, Weathers FW, Nagy LM et al (1995) The development of a clinician-administered PTSD scale. J Trauma Stress 8:75–90CrossRefPubMedGoogle Scholar
  5. Calley CS, Kraut MA, Spence JS et al (2010) The neuroanatomic correlates of semantic memory deficits in patients with Gulf War Illnesses: a pilot study. Brain Imaging Behav 4:248–255CrossRefPubMedGoogle Scholar
  6. Chao LL, Abadjian L, Hlavin J, Meyerhoff DJ, Weiner MW (2011) Effects of low-level sarin and cyclosarin exposure and Gulf War Illness on brain structure and function: a study at 4T. Neurotoxicology 32:814–822CrossRefPubMedGoogle Scholar
  7. Chao LL, Reeb R, Esparza IL, Abadjian LR (2016) Associations between the self-reported frequency of hearing chemical alarms in theater and regional brain volume in Gulf War Veterans. Neurotoxicology 53:246–256CrossRefPubMedPubMedCentralGoogle Scholar
  8. Dale AM, Fischl B, Sereno MI (1999) Cortical surface-based analysis. I. Segmentation and surface reconstruction. NeuroImage 9:179–194CrossRefPubMedGoogle Scholar
  9. De Stefano N, Stromillo ML, Giorgio A et al (2016) Establishing pathological cut-offs of brain atrophy rates in multiple sclerosis. J Neurol Neurosurg Psychiatry 87:93–99CrossRefPubMedGoogle Scholar
  10. Desikan RS, Segonne F, Fischl B et al (2006) An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. NeuroImage 31:968–980CrossRefPubMedGoogle Scholar
  11. Efron B, Tibshirani R (1993) An introduction to the bootstrap. Chapman & Hall, New YorkCrossRefGoogle Scholar
  12. Engdahl BE, James LM, Miller RD et al (2016) A magnetoencephalographic (MEG) study of Gulf War Illness (GWI). EBioMedicine 12:127–132CrossRefPubMedPubMedCentralGoogle Scholar
  13. Esposito P, Gheorghe D, Kandere K, Pang X, Connolly R, Jacobson S, Theoharides TC (2001) Acute stress increases permeability of the blood–brain-barrier through activation of brain mast cells. Brain Res 888:117–127CrossRefPubMedGoogle Scholar
  14. Fabis MJ, Phares TW, Kean RB, Koprowski H, Hooper DC (2008) Blood–brain barrier changes and cell invasion differ between therapeutic immune clearance of neurotrophic virus and CNS autoimmunity. Proc Natl Acad Sci USA 105:15511–15516CrossRefPubMedPubMedCentralGoogle Scholar
  15. First MB, Spitzer RL, Gibbon M, Williams JBW (2002) Structured clinical interview for DSM-IV-TR Axis I disorders, research version, non-patient edition (SCID-I/NP). Biometrics Research New York State Psychiatric Institute, New YorkGoogle Scholar
  16. Fischl B, Sereno MI, Dale A (1999a) Cortical surface-based analysis II: inflation, flattening, and surface-based coordinate system. NeuroImage 9:195–207CrossRefPubMedGoogle Scholar
  17. Fischl B, Sereno MI, Tootell RBH, Dale A (1999b) High-resolution inter-subject averaging and a coordinate system for the cortical surface. Hum Brain Mapp 8:272–284CrossRefPubMedGoogle Scholar
  18. Fischl B, Salat DH, Busa E et al (2002) Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain. Neuron 33:341–355CrossRefPubMedGoogle Scholar
  19. Fischl B, van der Kouwe A, Destrieux C et al (2004) Automatically parcellating the human cerebral cortex. Cereb Cortex 14:11–22CrossRefPubMedGoogle Scholar
  20. Fukuda K, Nisenbaum R, Stewart G et al (1998) Chronic multisymptom illness affecting air force veterans of the Gulf War. JAMA 280:981–988CrossRefPubMedGoogle Scholar
  21. Georgopoulos AP, James LM, Mahan MY et al (2016) Reduced human leukocyte antigen (HLA) protection in Gulf War Illness (GWI). EBioMedicine 3:79–85CrossRefPubMedGoogle Scholar
  22. Glasser MF, Sotiropoulos SN, Wilson JA et al (2013) The minimal preprocessing pipelines for the human connectome project. NeuroImage 80:105–124CrossRefPubMedPubMedCentralGoogle Scholar
  23. Gopinath K, Gandhi P, Goyal A et al (2012) FMRI reveals abnormal central processing of sensory and pain stimuli in ill Gulf War veterans. Neurotoxicology 33:261–271CrossRefPubMedPubMedCentralGoogle Scholar
  24. Haley RW, Hom J, Roland PS et al (1997) Evaluation of neurologic function in Gulf War veterans: a blinded case–control study. JAMA 277:223–230CrossRefPubMedGoogle Scholar
  25. Haley RW, Marshall WW, McDonald GG et al (2000) Brain abnormalities in Gulf War syndrome: evaluation with 1H MR spectroscopy 1. Radiology 215:807–817CrossRefPubMedGoogle Scholar
  26. Haley RW, Spence JS, Carmack PS et al (2009) Abnormal brain response to cholinergic challenge in chronic encephalopathy from the 1991 Gulf War. Psychiatry Res Neuroimaging 171:207–220CrossRefPubMedGoogle Scholar
  27. Heaton KJ, Palumbo CL, Proctor SP et al (2007) Quantitative magnetic resonance brain imaging in US army veterans of the 1991 Gulf War potentially exposed to sarin and cyclosarin. Neurotoxicology 28:761–769CrossRefPubMedGoogle Scholar
  28. Institute of Medicine National Research Council (2000) Gulf War and Health, vol 1. Depleted uranium, pyridostigmine bromide, sarin, and vaccines. National Academies Press, Washington DCGoogle Scholar
  29. James LM, Engdahl BE, Leuthold AC, Georgopoulos AP (2016) Brain correlates of human leukocyte antigen (HLA) protection in Gulf War Illness (GWI). EBioMedicine. 13:72–79. doi:10.1016/j.ebiom.2016.10.019 CrossRefPubMedPubMedCentralGoogle Scholar
  30. Lee C, William O, Stonestreet BS, Cashore WJ (1989) Permeability of the blood brain barrier for 125I-albumin-bound bilirubin in newborn piglets. Pediatr Res 25:452–456CrossRefPubMedGoogle Scholar
  31. Liu P, Aslan S, Li X, Buhner DM et al (2011) Perfusion deficit to cholinergic challenge in veterans with Gulf War Illness. Neurotoxicology 32:242–246CrossRefPubMedGoogle Scholar
  32. Michalak S, Wender M, Michalowska-Wender G, Kozubski W (2010) Blood–brain barrier breakdown and cerebellar degeneration in the course of experimental neoplastic disease. Are circulating cytokine-induced neutrophil chemoattractant-1 (CINC-1) and -2alpha(CINC-2alpha) the involved mediators? Folia Neuropathol 48:93–103PubMedGoogle Scholar
  33. Mitoma H, Hadjivassiliou M, Honnorat J (2015) Guidelines for treatment of immune-mediated cerebellar ataxias. Cereb Ataxias 2:14. doi:10.1186/s40673-015-0034-y CrossRefGoogle Scholar
  34. Mitoma H, Adhikari K, Aeschlimann D et al (2016) Consensus paper: neuroimmune mechanisms of cerebellar ataxias. Cerebellum 15:213–232CrossRefPubMedGoogle Scholar
  35. Muller DM, Pender MP, Greer JM (2005) Blood–brain barrier disruption and lesion localisation in experimental autoimmune encephalomyelitis with predominant cerebellar and brainstem involvement. J Neuroimmunol 160:162–169CrossRefPubMedGoogle Scholar
  36. Phares TW, Kean RB, Mikheeva T, Hooper DC (2006) Regional differences in blood–brain barrier permeability changes and inflammation in the apathogenic clearance of virus from the central nervous system. J Immunol 176:7666–7675CrossRefPubMedGoogle Scholar
  37. Rayhan RU, Raksit MP, Timbol CR et al (2013a) Prefrontal lactate predicts exercise-induced cognitive dysfunction in Gulf War Illness. Am J Transl Res. 5:212–223PubMedPubMedCentralGoogle Scholar
  38. Rayhan RU, Stevens BW, Raksit MP et al (2013b) Exercise challenge in Gulf War Illness reveals two subgroups with altered brain structure and function. PLoS ONE 8:e63903CrossRefPubMedPubMedCentralGoogle Scholar
  39. Research Advisory Committee on Gulf War veterans’ illnesses (2014) Gulf War illness and the health of Gulf War veterans: research update and recommendations, 2009–2013. Government Printing Office, Washington DCGoogle Scholar
  40. Schmahmann JD, Sherman JC (1998) The cerebellar cognitive affective syndrome. Brain 121:561–579CrossRefPubMedGoogle Scholar
  41. Selim M, Drachman DA (2001) Ataxia associated with Hashimoto’s disease: progressive non-familial adult onset cerebellar degeneration with autoimmune thyroiditis. J Neurol Neurosurg Psychiatry 71:81–87CrossRefPubMedPubMedCentralGoogle Scholar
  42. Steele L (2000) Prevalence and patterns of Gulf War Illness in Kansas veterans: association of symptoms with characteristics of person, place, and time of military service. Am J Epidemiol 152:992–1002CrossRefPubMedGoogle Scholar
  43. Valk J, van der Knaap MS (1992) Toxic encephalopathy. Am J Neuroradiol 13:747–760PubMedGoogle Scholar
  44. Weiner MW, Meyerhoff DJ, Neylan TC et al (2011) The relationship between Gulf War Illness, brain N-acetylaspartate, and post-traumatic stress disorder. Mil Med 176:896–902CrossRefPubMedPubMedCentralGoogle Scholar
  45. White RF, Steele L, O’Callaghan JP et al (2016) Recent research on Gulf War Illness and other health problems in veterans of the 1991 Gulf War: effects of toxicant exposures during deployment. Cortex 74:449–475CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany (outside the USA) 2017

Authors and Affiliations

  • Peka Christova
    • 1
    • 2
  • Lisa M. James
    • 1
    • 2
    • 3
  • Brian E. Engdahl
    • 1
    • 2
    • 4
  • Scott M. Lewis
    • 1
    • 5
  • Adam F. Carpenter
    • 1
    • 5
  • Apostolos P. Georgopoulos
    • 1
    • 2
    • 3
    • 5
  1. 1.Brain Sciences Center, Department of Veterans Affairs Health Care SystemMinneapolis VAHCSMinneapolisUSA
  2. 2.Department of NeuroscienceUniversity of Minnesota Medical SchoolMinneapolisUSA
  3. 3.Department of PsychiatryUniversity of Minnesota Medical SchoolMinneapolisUSA
  4. 4.Department of PsychologyUniversity of MinnesotaMinneapolisUSA
  5. 5.Department of NeurologyUniversity of Minnesota Medical SchoolMinneapolisUSA

Personalised recommendations