Skip to main content

Advertisement

Log in

Inhibition of neuropathic hyperalgesia by intrathecal bone marrow stromal cells is associated with alteration of multiple soluble factors in cerebrospinal fluid

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

Injury-induced neuropathic pain remains a serious clinical problem. Recent studies indicate that bone marrow stromal cells (BMSCs) effectively attenuate chronic neuropathic pain in animal models. Here, we examined the therapeutic effect of intrathecal administration of BMSCs isolated from young (1-month-old) rats on pain hypersensitivity induced by tibial nerve injury. Cerebrospinal fluid (CSF) was collected and analyzed to examine the effect of BMSC administration on the expression of 67 soluble factors in CSF. A sustained remission in injury-induced mechanical hyperalgesia was observed in BMSC-treated rats but not in control animals. Engrafted BMSCs were observed in spinal cords and dorsal root ganglia at 5 weeks after cell injection. Injury significantly decreased the levels of six soluble factors in CSF: intercellular adhesion molecule 1 (ICAM-1), interleukin-1β (IL-1β), IL-10, hepatocyte growth factor (HGF), Nope protein, and neurogenic locus notch homolog protein 1 (Notch-1). Intrathecal BMSCs significantly attenuated the injury-induced reduction of ICAM-1, IL-1β, HGF, IL-10, and Nope. This study adds to evidence supporting the use of intrathecal BMSCs in pain control and shows that this effect is accompanied by the reversal of injury-induced reduction of multiple CSF soluble factors. Our findings suggest that these soluble factors may be potential targets for treating chronic pain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abdel Aziz MT et al (2013) Effect of mesenchymal stem cells and a novel curcumin derivative on Notch1 signaling in hepatoma cell line. Biomed Res Int 2013:129629

    Article  PubMed  PubMed Central  Google Scholar 

  • Aggarwal S, Pittenger MF (2005) Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood 105:1815–1822

    Article  CAS  PubMed  Google Scholar 

  • Backonja MM et al (2008) Altered cytokine levels in the blood and cerebrospinal fluid of chronic pain patients. J Neuroimmunol 195:157–163

    Article  CAS  PubMed  Google Scholar 

  • Bara JJ et al (2014) Bone marrow-derived mesenchymal stem cells become antiangiogenic when chondrogenically or osteogenically differentiated: implications for bone and cartilage tissue engineering. Tissue Eng Part A 20:147–159

    Article  CAS  PubMed  Google Scholar 

  • Basbaum AI et al (2009) Cellular and molecular mechanisms of pain. Cell 139:267–284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Batten P et al (2006) Human mesenchymal stem cells induce T cell anergy and downregulate T cell allo-responses via the TH2 pathway: relevance to tissue engineering human heart valves. Tissue Eng 12:2263–2273

    Article  CAS  PubMed  Google Scholar 

  • Beyth S et al (2005) Human mesenchymal stem cells alter antigen-presenting cell maturation and induce T-cell unresponsiveness. Blood 105:2214–2219

    Article  CAS  PubMed  Google Scholar 

  • Brierley JB, Field EJ (1948) The connexions of the spinal sub-arachnoid space with the lymphatic system. J Anat 82:153–166

    PubMed Central  Google Scholar 

  • Chaplan SR et al (1994) Quantitative assessment of tactile allodynia in the rat paw. J Neurosci Methods 53:55–63

    Article  CAS  PubMed  Google Scholar 

  • Chen G et al (2015) Intrathecal bone marrow stromal cells inhibit neuropathic pain via TGF-beta secretion. J Clin Investig 125:3226–3240

    Article  PubMed  PubMed Central  Google Scholar 

  • Clark AK, Old EA, Malcangio M (2013) Neuropathic pain and cytokines: current perspectives. J Pain Res 6:803–814

    PubMed  PubMed Central  Google Scholar 

  • Crisostomo PR et al (2008) Human mesenchymal stem cells stimulated by TNF-alpha, LPS, or hypoxia produce growth factors by an NF kappa B—but not JNK-dependent mechanism. Am J Physiol Cell Physiol 294:C675–C682

    Article  CAS  PubMed  Google Scholar 

  • Decosterd I, Woolf CJ (2000) Spared nerve injury: an animal model of persistent peripheral neuropathic pain. Pain 87:149–158

    Article  CAS  PubMed  Google Scholar 

  • Del Papa B et al (2013) Notch1 modulates mesenchymal stem cells mediated regulatory T-cell induction. Eur J Immunol 43:182–187

    Article  PubMed  Google Scholar 

  • Dixon WJ (1980) Efficient analysis of experimental observations. Annu Rev Pharmacol Toxicol 20:441–462

    Article  CAS  PubMed  Google Scholar 

  • Dominici M et al (2006) Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8:315–317

    Article  CAS  PubMed  Google Scholar 

  • Franchi S et al (2012) Intravenous neural stem cells abolish nociceptive hypersensitivity and trigger nerve regeneration in experimental neuropathy. Pain 153:850–861

    Article  PubMed  Google Scholar 

  • Guo W et al (2011) Bone marrow stromal cells produce long-term pain relief in rat models of persistent pain. Stem Cells 29:1294–1303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Himango WA, Low FN (1971) The fine structure of a lateral recess of the subarachnoid space in the rat. Anat Rec 171:1–19

    Article  CAS  PubMed  Google Scholar 

  • Hofmann HA et al (2003) Pharmacological sensitivity and gene expression analysis of the tibial nerve injury model of neuropathic pain. Eur J Pharmacol 470:17–25

    Article  CAS  PubMed  Google Scholar 

  • Hogan Q et al (2004) Detection of neuropathic pain in a rat model of peripheral nerve injury. Anesthesiology 101:476–487

    Article  PubMed  Google Scholar 

  • Hosseini M et al (2015) The effect of bone marrow-derived mesenchymal stem cell transplantation on allodynia and hyperalgesia in neuropathic animals: a systematic review with meta-analysis. Biol Blood Marrow Transplant 21:1537–1544

    Article  PubMed  Google Scholar 

  • Jacobs SA et al (2013) Immunological characteristics of human mesenchymal stem cells and multipotent adult progenitor cells. Immunol Cell Biol 91:32–39

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kessler JA et al (2015) Double-blind, placebo-controlled study of HGF gene therapy in diabetic neuropathy. Ann Clin Transl Neurol 2:465–478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kucerova L et al (2010) Tumor cell behaviour modulation by mesenchymal stromal cells. Mol Cancer 9:129

    Article  PubMed  PubMed Central  Google Scholar 

  • Kwilasz AJ et al (2015) The therapeutic potential of interleukin-10 in neuroimmune diseases. Neuropharmacology 96:55–69

    Article  CAS  PubMed  Google Scholar 

  • Labuz D et al (2009) Immune cell-derived opioids protect against neuropathic pain in mice. J Clin Invest 119:278–286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ledeboer A et al (2007) Intrathecal interleukin-10 gene therapy attenuates paclitaxel-induced mechanical allodynia and proinflammatory cytokine expression in dorsal root ganglia in rats. Brain Behav Immun 21:686–698

    Article  CAS  PubMed  Google Scholar 

  • Lee MW et al (2015) Strategies to improve the immunosuppressive properties of human mesenchymal stem cells. Stem Cell Res Ther 6:179

    Article  PubMed  PubMed Central  Google Scholar 

  • Liang X et al (2014) Paracrine mechanisms of mesenchymal stem cell-based therapy: current status and perspectives. Cell Transplant 23:1045–1059

    Article  PubMed  Google Scholar 

  • Liu L, Duff K (2008) A technique for serial collection of cerebrospinal fluid from the cisterna magna in mouse. J Vis Exp JoVE 21:960. doi:10.3791/960

  • Machelska H et al (2002) Opioid control of inflammatory pain regulated by intercellular adhesion molecule-1. J Neurosci 22:5588–5596

    CAS  PubMed  Google Scholar 

  • Mackenzie TC, Flake AW (2001) Human mesenchymal stem cells persist, demonstrate site-specific multipotential differentiation, and are present in sites of wound healing and tissue regeneration after transplantation into fetal sheep. Blood Cells Mol Dis 27:601–604

    Article  CAS  PubMed  Google Scholar 

  • Mao F et al (2010) Immunosuppressive effects of mesenchymal stem cells in collagen-induced mouse arthritis. Inflamm Res 59:219–225

    Article  CAS  PubMed  Google Scholar 

  • Meirelles Lda S et al (2009) Mechanisms involved in the therapeutic properties of mesenchymal stem cells. Cytokine Growth Factor Rev 20:419–427

    Article  PubMed  Google Scholar 

  • Meyerrose T et al (2010) Mesenchymal stem cells for the sustained in vivo delivery of bioactive factors. Adv Drug Deliv Rev 62:1167–1174

    Article  CAS  PubMed  Google Scholar 

  • Milligan ED et al (2006) Intrathecal polymer-based interleukin-10 gene delivery for neuropathic pain. Neuron Glia Biol 2:293–308

    Article  PubMed  PubMed Central  Google Scholar 

  • Nadeau S et al (2011) Functional recovery after peripheral nerve injury is dependent on the pro-inflammatory cytokines IL-1beta and TNF: implications for neuropathic pain. J Neurosci 31:12533–12542

    Article  CAS  PubMed  Google Scholar 

  • Pittenger MF et al (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284:143–147

    Article  CAS  PubMed  Google Scholar 

  • Pleticha J et al (2015) High cerebrospinal fluid levels of interleukin-10 attained by AAV in dogs. Gene Ther 22:202–208

    Article  CAS  PubMed  Google Scholar 

  • Ren G et al (2010) Inflammatory cytokine-induced intercellular adhesion molecule-1 and vascular cell adhesion molecule-1 in mesenchymal stem cells are critical for immunosuppression. J Immunol 184:2321–2328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Salbaum JM, Kappen C (2000) Cloning and expression of nope, a new mouse gene of the immunoglobulin superfamily related to guidance receptors. Genomics 64:15–23

    Article  CAS  PubMed  Google Scholar 

  • Schafer S et al (2014) Influence of intrathecal delivery of bone marrow-derived mesenchymal stem cells on spinal inflammation and pain hypersensitivity in a rat model of peripheral nerve injury. J Neuroinflamm 11:157

    Article  Google Scholar 

  • Shibata T et al (2008) Transplantation of bone marrow-derived mesenchymal stem cells improves diabetic polyneuropathy in rats. Diabetes 57:3099–3107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Siniscalco D et al (2010) Intra-brain microinjection of human mesenchymal stem cells decreases allodynia in neuropathic mice. Cell Mol Life Sci CMLS 67:655–669

    Article  CAS  PubMed  Google Scholar 

  • Sun YY et al (2012) The spinal notch signaling pathway plays a pivotal role in the development of neuropathic pain. Mol Brain 5:23

    Article  CAS  PubMed  Google Scholar 

  • Temporin K et al (2008) Interleukin-1 beta promotes sensory nerve regeneration after sciatic nerve injury. Neurosci Lett 440:130–133

    Article  CAS  PubMed  Google Scholar 

  • Tolar J et al (2010) Concise review: hitting the right spot with mesenchymal stromal cells. Stem Cells 28:1446–1455

    Article  PubMed  PubMed Central  Google Scholar 

  • Tran C, Damaser MS (2015) Stem cells as drug delivery methods: application of stem cell secretome for regeneration. Adv Drug Deliv Rev 82–83:1–11

    Article  PubMed  Google Scholar 

  • Tsuchihara T et al (2009) Nonviral retrograde gene transfer of human hepatocyte growth factor improves neuropathic pain-related phenomena in rats. Mol Ther 17:42–50

    Article  CAS  PubMed  Google Scholar 

  • von Hehn CA, Baron R, Woolf CJ (2012) Deconstructing the neuropathic pain phenotype to reveal neural mechanisms. Neuron 73:638–652

    Article  Google Scholar 

  • Wehner R et al (2009) Mesenchymal stem cells efficiently inhibit the proinflammatory properties of 6-sulfo LacNAc dendritic cells. Haematologica 94:1151–1156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wen L et al (2014) Immunomodulatory effects of bone marrow-derived mesenchymal stem cells on pro-inflammatory cytokine-stimulated human corneal epithelial cells. PLoS One 9:e101841

    Article  PubMed  PubMed Central  Google Scholar 

  • Wu HE et al (2010) Learned avoidance from noxious mechanical simulation but not threshold semmes weinstein filament stimulation after nerve injury in rats. J Pain 11:280–286

    Article  PubMed  Google Scholar 

  • Xie K et al (2015) Notch signaling activation is critical to the development of neuropathic pain. BMC Anesthesiol 15:41

    Article  PubMed  PubMed Central  Google Scholar 

  • Xu Q et al (2013) Intrathecal transplantation of neural stem cells appears to alleviate neuropathic pain in rats through release of GDNF. Ann Clin Lab Sci 43:154–162

    CAS  PubMed  Google Scholar 

  • Yu H et al (2011) Lentiviral gene transfer into the dorsal root ganglion of adult rats. Mol Pain 7:63

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu H et al (2015) Analgesia for neuropathic pain by dorsal root ganglion transplantation of genetically engineered mesenchymal stem cells: initial results. Mol Pain 11:5

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by grant from the National Institute of Neurological Disorders and Stroke (R01NS079626-01) to QHH. Authors thank Zhen Liu for assistance in histological sample preparation.

Author information

Authors and Affiliations

Authors

Contributions

HY and QHH contributed to conception and design of the study; GF, HY, and QHH helped in performing experiments, collection and/or assembly of data, data analysis and interpretation, and manuscript writing; FW and HX performed experiments and data analysis; XB helped with consultant.

Corresponding authors

Correspondence to Hongwei Yu or Quinn H. Hogan.

Ethics declarations

Conflict of interest

The authors indicated no potential conflicts of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

221_2017_5000_MOESM1_ESM.xlsx

Supplementary Table 1. Complete results of antibody array. Mean concentration of each soluble factor in CSF (n = 5 for each group) with SEM. (XLSX 13 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fischer, G., Wang, F., Xiang, H. et al. Inhibition of neuropathic hyperalgesia by intrathecal bone marrow stromal cells is associated with alteration of multiple soluble factors in cerebrospinal fluid. Exp Brain Res 235, 2627–2638 (2017). https://doi.org/10.1007/s00221-017-5000-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-017-5000-x

Keywords

Navigation