Experimental Brain Research

, Volume 235, Issue 7, pp 2039–2047 | Cite as

Visual information from observing grasping movement in allocentric and egocentric perspectives: development in typical children

  • Francesca Tinelli
  • Giovanni Cioni
  • Giulio Sandini
  • Marco Turi
  • Maria Concetta Morrone
Research Article


Development of the motor system lags behind that of the visual system and might delay some visual properties more closely linked to action. We measured the developmental trajectory of the discrimination of object size from observation of the biological motion of a grasping action in egocentric and allocentric viewpoints (observing action of others or self), in children and adolescents from 5 to 18 years of age. Children of 5–7 years of age performed the task at chance, indicating a delayed ability to understand the goal of the action. We found a progressive improvement in the ability of discrimination from 9 to 18 years, which parallels the development of fine motor control. Only after 9 years of age did we observe an advantage for the egocentric view, as previously reported for adults. Given that visual and haptic sensitivity of size discrimination, as well as biological motion, are mature in early adolescence, we interpret our results as reflecting immaturity of the influence of the motor system on visual perception.


Biological motion Children Allocentric perspective Egocentric perspective Grasping Size perception 



We thank Antonino Santagati for his supporting in collecting data in children and adolescents and Francesco Campanella for providing the visual stimuli and Prof David Burr for proof reading of the manuscript and helpful discussion. This research was supported by the European Research Council under the European Union’s Seventh Framework Programme (FPT/2007–2013), Grant agreement #338866 ECSPLAIN.


  1. Aglioti SM, Cesari P, Romani M, Urgesi C (2008) Action anticipation and motor resonance in elite basketball players. Nat Neurosci 11:1109–1116CrossRefPubMedGoogle Scholar
  2. Ansuini C, Cavallo A, Koul A, Jacono M, Yang Y, Becchio C (2015) Predicting object size from hand kinematics: a temporal perspective. PloS One 10:e0120432. doi: 10.1371/journal.pone.0120432 CrossRefPubMedPubMedCentralGoogle Scholar
  3. Armand J, Olivier E, Edgley SA, Lemon RN (1997) Postnatal development of corticospinal projections from motor cortex to the cervical enlargement in the macaque monkey. J Neurosci 17:251–266PubMedGoogle Scholar
  4. Arrighi R, Cartocci G, Burr D (2011) Reduced perceptual sensitivity for biological motion in paraplegia patients. Curr Biol 21:R910–911 doi: 10.1016/j.cub.2011.09.048 CrossRefPubMedGoogle Scholar
  5. Bach P, Fenton-Adams W, Tipper SP (2014) Can’t touch this: the first-person perspective provides privileged access to predictions of sensory action outcomes. J Exp Psychol Human Percept Perform 40:457–464 doi: 10.1037/a0035348 CrossRefGoogle Scholar
  6. Biagi L, Cioni G, Fogassi L, Guzzetta A, Sgandurra G, Tosetti M (2015) Action observation network in childhood: a comparative fMRI study with adults. Dev Sci doi: 10.1111/desc.12353 PubMedGoogle Scholar
  7. Blake R, Turner LM, Smoski MJ, Pozdol SL, Stone WL (2003) Visual recognition of biological motion is impaired in children with autism. Psychol Sci 14:151–157CrossRefPubMedGoogle Scholar
  8. Brainard DH (1997) The psychophysics toolbox. Spat Vis 10:433–436CrossRefPubMedGoogle Scholar
  9. Calvo-Merino B, Grezes J, Glaser DE, Passingham RE, Haggard P (2006) Seeing or doing? Influence of visual and motor familiarity in action observation. Curr Biol 16:1905–1910 doi: 10.1016/j.cub.2006.07.065 CrossRefPubMedGoogle Scholar
  10. Campanella F, Sandini G, Morrone MC (2011) Visual information gleaned by observing grasping movement in allocentric and egocentric perspectives. Proc Biol Sci 278:2142–2149CrossRefPubMedGoogle Scholar
  11. Casile A, Giese MA (2006) Nonvisual motor training influences biological motion perception. Curr Biol 16:69–74 doi: 10.1016/j.cub.2005.10.071 CrossRefPubMedGoogle Scholar
  12. Cohen J (1988) Statistical power analysis for the behavioral sciences. 2nd edn. L. Erlbaum Associates, HillsdaleGoogle Scholar
  13. Drew AR, Quandt LC, Marshall PJ (2015) Visual influences on sensorimotor EEG responses during observation of hand actions. Brain Res 1597:119–128. doi: 10.1016/j.brainres.2014.11.048 CrossRefPubMedGoogle Scholar
  14. Efron B, Tibshirani RJ (1993) An introduction to the bootstrap vol 57. Monographs on statistics and applied probability. Chapman & Hall, New YorkCrossRefGoogle Scholar
  15. Eyre JA (2003) Development and plasticity of the corticospinal system in man. Neural Plast 10:93–106CrossRefPubMedPubMedCentralGoogle Scholar
  16. Forssberg H (1999) Neural control of human motor development. Curr opin Neurobiol 9:676–682CrossRefPubMedGoogle Scholar
  17. Geangu E, Senna I, Croci E, Turati C (2015) The effect of biomechanical properties of motion on infants’ perception of goal-directed grasping actions. J Exp child Psychol 129:55–67. doi: 10.1016/j.jecp.2014.08.005 CrossRefPubMedGoogle Scholar
  18. Goodale M (2014) How (and why) the visual control of action differs from visual perception. Proc Biol Sci 281:20140337. doi: 10.1098/rspb.2014.0337 CrossRefPubMedPubMedCentralGoogle Scholar
  19. Goodale M, Milner AD (1992) Separate pathways for perception and action. TINS 15:20–25PubMedGoogle Scholar
  20. Gori M, Del Viva M, Sandini G, Burr DC (2008) Young children do not integrate visual and haptic form information. Curr Biol 18:694–698. doi: 10.1016/j.cub.2008.04.036 CrossRefPubMedGoogle Scholar
  21. Green DM, Swets JA (1966) Signal detection theory and psychophysics. Wiley, New YorkGoogle Scholar
  22. Hadad B, Schwartz S, Maurer D, Lewis TL (2015) Motion perception: a review of developmental changes and the role of early visual experience. Front Integr Neurosci 9:49. doi: 10.3389/fnint.2015.00049 CrossRefPubMedPubMedCentralGoogle Scholar
  23. Heineman KR, Middelburg KJ, Hadders-Algra M (2010) Development of adaptive motor behaviour in typically developing infants. Acta Paediatr 99:618–624CrossRefPubMedGoogle Scholar
  24. Heinen F, Glocker FX, Fietzek U, Meyer BU, Lucking CH, Korinthenberg R (1998) Absence of transcallosal inhibition following focal magnetic stimulation in preschool children. Ann Neurol 43:608–612CrossRefPubMedGoogle Scholar
  25. Johansson G (1973) Visual perception of biological motion and a model for its analysis. Perception Psychophysics 14:201–211CrossRefGoogle Scholar
  26. Knoblich G, Flach R (2001) Predicting the effects of actions: interactions of perception and action. Psychol Sci 12:467–472CrossRefPubMedGoogle Scholar
  27. Knoblich G, Seigerschmidt E, Flach R, Prinz W (2002) Authorship effects in the prediction of handwriting strokes: evidence for action simulation during action perception. Q J Exp Psychol A (Human Experimental Psychology) 55:1027–1046. doi: 10.1080/02724980143000631 CrossRefGoogle Scholar
  28. Kuhtz-Buschbeck JP, Stolze H, Johnk K, Boczek-Funcke A, Illert M (1998) Development of prehension movements in children: a kinematic study. Exp Brain Res 122:424–432CrossRefPubMedGoogle Scholar
  29. Mayston MJ, Harrison LM, Stephens JA (1999) A neurophysiological study of mirror movements in adults and children. Ann Neurol 45:583–594CrossRefPubMedGoogle Scholar
  30. Mulligan D, Hodges NJ (2014) Throwing in the dark: improved prediction of action outcomes following motor training without vision of the action. Psychol Res 78:692–704. doi: 10.1007/s00426-013-0526-4 CrossRefPubMedGoogle Scholar
  31. Olivier E, Edgley SA, Armand J, Lemon RN (1997) An electrophysiological study of the postnatal development of the corticospinal system in the macaque monkey. J Neurosci 17:267–276PubMedGoogle Scholar
  32. Pavlova M, Krageloh-Mann I, Sokolov A, Birbaumer N (2001) Recognition of point-light biological motion displays by young children. Perception 30:925–933CrossRefPubMedGoogle Scholar
  33. Rizzolatti G, Sinigaglia C (2010) The functional role of the parieto-frontal mirror circuit: interpretations and misinterpretations. Nat Rev Neurosci 11:264–274. doi: 10.1038/nrn2805 CrossRefPubMedGoogle Scholar
  34. Rizzolatti G, Fogassi L, Gallese V (2001) Neurophysiological mechanisms underlying the understanding and imitation of action. Nat Rev Neurosci 2:661–670. doi: 10.1038/35090060 CrossRefPubMedGoogle Scholar
  35. Rochat P (1989) Object Manipulation and exploration in 2-month-old to 5-month-old infants. Dev Psychol 25:871–884. doi: 10.1037//0012-1649.25.6.871 CrossRefGoogle Scholar
  36. Ruby P, Decety J (2001) Effect of subjective perspective taking during simulation of action: a PET investigation of agency. Nat Neurosci 4:546–550PubMedGoogle Scholar
  37. Sweeny TD, Wurnitsch N, Gopnik A, Whitney D (2013) Sensitive perception of a person’s direction of walking by 4-year-old children. Dev Psychol 49:2120–2124. doi: 10.1037/a0031714 CrossRefPubMedPubMedCentralGoogle Scholar
  38. Tomassini A, Spinelli D, Jacono M, Sandini G, Morrone MC (2015) Rhythmic oscillations of visual contrast sensitivity synchronized with action. J Neurosci 35:7019–7029. doi: 10.1523/JNEUROSCI.4568-14.2015 CrossRefPubMedPubMedCentralGoogle Scholar
  39. Van Overwalle F, Baetens K (2009) Understanding others’ actions and goals by mirror and mentalizing systems: a meta-analysis. NeuroImage 48:564–584. doi: 10.1016/j.neuroimage.2009.06.009 CrossRefPubMedGoogle Scholar
  40. Vandermeer A, Vanderweel R (1995) Keeping the arm in the limelight: the functional significance of neonatal arm movements. Stud Percept Action 3:269–272Google Scholar
  41. von Hofsten C (1991) Structuring of early reaching movements: a longitudinal study. J Motor Behav 23:280–292 doi: 10.1080/00222895.1991.9942039 CrossRefGoogle Scholar
  42. Woodward AL (1998) Infants selectively encode the goal object of an actor’s reach. Cognition 69:1–34. doi: 10.1016/S0010-0277(98)00058-4 CrossRefPubMedGoogle Scholar
  43. Zhao J, Wang L, Wang Y, Weng X, Li S, Jiang Y (2014) Developmental tuning of reflexive attentional effect to biological motion cues. Sci Rep 4:5558. doi: 10.1038/srep05558 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Francesca Tinelli
    • 1
  • Giovanni Cioni
    • 1
    • 2
  • Giulio Sandini
    • 3
  • Marco Turi
    • 4
    • 5
  • Maria Concetta Morrone
    • 1
    • 4
  1. 1.Department of Developmental NeuroscienceStella Maris Scientific InstitutePisaItaly
  2. 2.Department of Clinical and Experimental MedicineUniversity of PisaPisaItaly
  3. 3.Robotics, Brain and Cognitive Sciences DepartmentIstituto Italiano di TecnologiaGenoaItaly
  4. 4.Department of Translational Research on New Technologies in Medicine and SurgeryUniversity of PisaPisaItaly
  5. 5.Fondazione Stella Maris MediterraneoPotenzaItaly

Personalised recommendations