Advertisement

Experimental Brain Research

, Volume 235, Issue 6, pp 1919–1932 | Cite as

Organization of the reach and grasp in head-fixed vs freely-moving mice provides support for multiple motor channel theory of neocortical organization

  • Ian Q. WhishawEmail author
  • Jamshid Faraji
  • Jessica Kuntz
  • Behroo Mirza Agha
  • Mukt Patel
  • Gerlinde A. S. Metz
  • Majid H. MohajeraniEmail author
Research Article

Abstract

Multiple motor channel (MMC) theory of neocortical organization proposes that complex movements, such as reaching for a food item to eat, are produced by the coordinated action of separate neural channels. For example, the human reach-to-grasp act is mediated by two visuo-parieto-motor cortex channels, one for the reach and one for the grasp. The present analysis asked whether there is a similar organization of reach-and-grasp movements in the mouse. The reach-to-eat movements of the same mice were examined from high-shutter speed, frame-by-frame video analysis in three tasks in which the mice obtained equivalent success scores: when freely-moving reaching for food pellets, when head-fixed reaching for food pellets, and when head-fixed reaching for pieces of pasta. To reach, the mice used egocentric cues to vary upper arm movements in a task-appropriate manner to place an open hand on the food or to locate the food using a “touch-release-grasp” strategy. Although mice could not hand-shape offline when reaching, they could hand-shape using online touch-related cues from the mouth to manipulate the food at the mouth. That the reach can be performed offline in relation to egocentric cues whereas hand shaping for the grasp requires online cues supports the idea that for the mouse, as for primates, the reach and grasp are separate acts. The results are further discussed in relation to the use of the head-fixed behavioral procedure to identify the independent neural substrates of the reach and the grasp using mesoscale stimulation/imaging methods.

Keywords

Head-fixing and reaching Independent reach and grasp in mice Multiple channel organization of mouse reaching 

Notes

Acknowledgements

This work was supported by the Natural Sciences and Engineering Research Council of Canada (NSERC) Discovery Grant #40352 (MHM) and #05519 (GM), the Campus Alberta for Innovation Program Chair, the Alberta Alzheimer Research Program (MHM), and the Canadian Institutes of Health Research Grant #102652 (GM).

Compliance with ethical standards

Conflict of interest

The authors declare no competing financial interests.

Supplementary material

Supplementary material 1 (MOV 19281 KB)

Supplementary material 2 (MOV 20672 KB)

Supplementary material 3 (MOV 14586 KB)

Supplementary material 4 (MOV 27158 KB)

Supplementary material 5 (MOV 22776 KB)

References

  1. Arbib MA (2011) Perceptual structures and distributed motor control. In: Handbook of physiology, the nervous system, motor control. The American Physiological Society. doi: 10.1002/cphy.cp010233
  2. Ayling OG, Harrison TC, Boyd JD, Goroshkov A, Murphy TH (2009) Automated light-based mapping of motor cortex by photoactivation of channelrhodopsin-2 transgenic mice. Nat Methods 6:219–224. doi: 10.1038/nmeth.1303 CrossRefPubMedGoogle Scholar
  3. Binkofski F, Dohle C, Posse S, Stephan KM, Hefter H, Seitz RJ, Freund HJ (1998) Human anterior intraparietal area subserves prehension: a combined lesion and functional MRI activation study. Neurology 50:1253–1259CrossRefPubMedGoogle Scholar
  4. Binkofski F, Buccino G, Posse S, Seitz RJ, Rizzolatti G, Freund H (1999) A fronto-parietal circuit for object manipulation in man: evidence from an fMRI-study. Eur J Neurosci 11:3276–3286CrossRefPubMedGoogle Scholar
  5. Bonazzi L, Viaro R, Lodi E, Canto R, Bonifazzi C, Franchi G (2013) Complex movement topography and extrinsic space representation in the rat forelimb motor cortex as defined by long-duration intracortical microstimulation. J Neurosci 33:2097–2107. doi: 10.1523/JNEUROSCI.3454-12.2013 CrossRefPubMedGoogle Scholar
  6. Brown AR, Teskey GC (2014) Motor cortex Is functionally organized as a set of spatially distinct representations for complex movements. J Neurosci 34:13574–13585 doi: 10.1523/JNEUROSCI.2500-14.2014 CrossRefPubMedGoogle Scholar
  7. Carmel JB, Kim S, Brus-Ramer M, Martin JH (2010) Feed-forward control of preshaping in the rat is mediated by the corticospinal tract. Eur J Neurosci 32:1678–1685. doi: 10.1111/j.1460-9568.2010.07440.x CrossRefPubMedPubMedCentralGoogle Scholar
  8. Cavina-Pratesi C, Ietswaart M, Humphreys GW, Lestou V, Milner AD (2010a) Impaired grasping in a patient with optic ataxia: primary visuomotor deficit or secondary consequence of misreaching? Neuropsychologia 48:226–234. doi: 10.1016/j.neuropsychologia.2009.09.008 CrossRefPubMedGoogle Scholar
  9. Cavina-Pratesi C, Monaco S, Fattori P et al (2010b) Functional magnetic resonance imaging reveals the neural substrates of arm transport and grip formation in reach-to-grasp actions in humans. J Neurosci 30:10306–10323. doi: 10.1523/JNEUROSCI.2023-10.2010 CrossRefPubMedGoogle Scholar
  10. Chan AW, Mohajerani MH, LeDue JM, Wang YT, Murphy TH (2015) Mesoscale infraslow spontaneous membrane potential fluctuations recapitulate high-frequency activity cortical motifs. Nat Commun 6:7738. doi: 10.1038/ncomms8738 CrossRefPubMedPubMedCentralGoogle Scholar
  11. Chen JL, Andermann ML, Keck T, Xu NL, Ziv Y (2013) Imaging neuronal populations in behaving rodents: paradigms for studying neural circuits underlying behavior in the mammalian cortex. J Neurosci 33:17631–17640. doi: 10.1523/JNEUROSCI.3255-13.2013 CrossRefPubMedPubMedCentralGoogle Scholar
  12. Culham JC, Valyear KF (2006) Human parietal cortex in action. Curr Opin Neurobiol 16:205–212. doi: 10.1016/j.conb.2006.03.005 CrossRefPubMedGoogle Scholar
  13. De Sanctis T, Tarantino V, Straulino E, Begliomini C, Castiello U (2013) Co-registering kinematics and evoked related potentials during visually guided reach-to-grasp movements. PLoS ONE 8:e65508. doi: 10.1371/journal.pone.0065508 CrossRefPubMedPubMedCentralGoogle Scholar
  14. Donoghue JP, Wise SP (1982) The motor cortex of the rat: cytoarchitecture and microstimulation mapping. J Comp Neurol 212:76–88. doi: 10.1002/cne.902120106 CrossRefPubMedGoogle Scholar
  15. Eshkol N, Wachman A (1958) Movement notation. Weinfield and Nicolson, LondonGoogle Scholar
  16. Farr TD, Whishaw IQ (2002) Quantitative and qualitative impairments in skilled reaching in the mouse (Mus musculus) after a focal motor cortex stroke. Stroke 33:1869–1875. doi: 10.1161/01.Str.0000020714.48348.4e CrossRefPubMedGoogle Scholar
  17. Fattori P, Kutz DF, Breveglieri R, Marzocchi N, Galletti C (2005) Spatial tuning of reaching activity in the medial parieto-occipital cortex (area V6A) of macaque monkey. Eur J Neurosci 22:956–972. doi: 10.1111/j.1460-9568.2005.04288.x CrossRefPubMedGoogle Scholar
  18. Filimon F (2010) Human cortical control of hand movements: parietofrontal networks for reaching, grasping, and pointing. Neuroscientist 16:388–407. doi: 10.1177/1073858410375468 CrossRefPubMedGoogle Scholar
  19. Gharbawie OA, Stepniewska I, Kaas JH (2011) Cortical connections of functional zones in posterior parietal cortex and frontal cortex motor regions in new world monkeys. Cereb Cortex 21:1981–2002. doi: 10.1093/cercor/bhq260 CrossRefPubMedPubMedCentralGoogle Scholar
  20. Graziano MS (2016) Ethological action maps: a paradigm shift for the motor cortex. Trends Cogn Sci 20:121–132. doi: 10.1016/j.tics.2015.10.008 CrossRefPubMedGoogle Scholar
  21. Guo ZCV, Hires SA, Li N, et al. (2014) Procedures for behavioral experiments in head-fixed mice. Plos ONE 9 doi: 10.1371/journal.pone.0088678
  22. Guo JZ, Graves AR, Guo WW, et al. (2015) Cortex commands the performance of skilled movement. Elife 4 doi: 10.7554/eLife.10774
  23. Hall RD, Lindholm EP (1974) Organization of motor and somatosensory neocortex in albino-rat. Brain Res 66:23–38. doi: 10.1016/0006-8993(74)90076-6 CrossRefGoogle Scholar
  24. Hall LA, Karl JM, Thomas BL, Whishaw IQ (2014) Reach and grasp reconfigurations reveal that proprioception assists reaching and hapsis assists grasping in peripheral vision. Exp Brain Res 232:2807–2819. doi: 10.1007/s00221-014-3945-6 CrossRefPubMedGoogle Scholar
  25. Harrison TC, Ayling OGS, Murphy TH (2012) Distinct cortical circuit mechanisms for complex forelimb movement and motor map topography. Neuron 74:397–409. doi: 10.1016/j.neuron.2012.02.028 CrossRefPubMedGoogle Scholar
  26. Hermer-Vazquez L, Hermer-Vazquez R, Chapin JK (2007) The reach-to-grasp-food task for rats: a rare case of modularity in animal behavior? Behav Brain Res 177:322–328. doi: 10.1016/j.bbr.2006.11.029 CrossRefPubMedPubMedCentralGoogle Scholar
  27. Hira R, Terada S, Kondo M, Matsuzaki M (2015) Distinct functional modules for discrete and rhythmic forelimb movements in the mouse motor cortex. J Neurosci 35:13311–13322. doi: 10.1523/Jneurosci.2731-15.2015 CrossRefPubMedGoogle Scholar
  28. Jeannerod M (1981) Intersegmental coordination during reaching at natural visual objects. Atten Perform 9: 153–168Google Scholar
  29. Jeannerod M (1999) Visuomotor channels: their integration in goal-directed prehension. Hum Mov Sci 18:201–218. doi: 10.1016/S0167-9457(99)00008-1 CrossRefGoogle Scholar
  30. Kaas JH, Gharbawie OA, Stepniewska I (2011) The organization and evolution of dorsal stream multisensory motor pathways in primates. Front Neuroanat 5:34 doi: 10.3389/fnana.2011.00034 CrossRefPubMedPubMedCentralGoogle Scholar
  31. Karl JM, Whishaw IQ (2013) Different evolutionary origins for the reach and the grasp: an explanation for dual visuomotor channels in primate parietofrontal cortex. Front Neurol 4:208 doi: 10.3389/fneur.2013.00208 CrossRefPubMedPubMedCentralGoogle Scholar
  32. Karl JM, Sacrey LA, Doan JB, Whishaw IQ (2012a) Oral hapsis guides accurate hand preshaping for grasping food targets in the mouth. Exp Brain Res 221:223–240. doi: 10.1007/s00221-012-3164-y CrossRefPubMedGoogle Scholar
  33. Karl JM, Sacrey LAR, Doan JB, Whishaw IQ (2012b) Hand shaping using hapsis resembles visually guided hand shaping. Exp Brain Res 219:59–74. doi: 10.1007/s00221-012-3067-y CrossRefPubMedGoogle Scholar
  34. Kyweriga M, Mohajerani MH (2016) Optogenetic Approaches for Mesoscopic Brain Mapping. Optogenet Methods Protoc 1408:251–265 doi: 10.1007/978-1-4939-3512-3_17 CrossRefGoogle Scholar
  35. Lim DH, Mohajerani MH, Ledue J, Boyd J, Chen SB, Murphy TH (2012) In vivo large-scale cortical mapping using channelrhodopsin-2 stimulation in transgenic mice reveals asymmetric and reciprocal relationships between cortical areas. Front Neural Circuits 6 doi: 10.3389/fncir.2012.00011
  36. Lim DH, Ledue JM, Mohajerani MH, Murphy TH (2014) Optogenetic mapping after stroke reveals network-wide scaling of functional connections and heterogeneous recovery of the peri-infarct. J Neurosci 34:16455–16466. doi: 10.1523/Jneurosci.3384-14.2014 CrossRefPubMedGoogle Scholar
  37. Metz GAS, Whishaw IQ (2000) Skilled reaching an action pattern: stability in rat (Rattus norvegicus) grasping movements as a function of changing food pellet size. Behav Brain Res 116:111–122. doi: 10.1016/S0166-4328(00)00245-X CrossRefPubMedGoogle Scholar
  38. Mohajerani MH, Chan AW, Mohsenvand M, et al. (2013) Spontaneous cortical activity alternates between motifs defined by regional axonal projections. Nat Neurosci 16:1426–1435 doi: 10.1038/nn.3499 CrossRefGoogle Scholar
  39. Neafsey EJ, Sievert C (1982) A second forelimb motor area exists in rat frontal cortex. Brain Res 232:151–156CrossRefPubMedGoogle Scholar
  40. Ramanathan D, Conner JM, Tuszynski MH (2006) A form of motor cortical plasticity that correlates with recovery of function after brain injury. Proc Natl Acad Sci USA 103:11370–11375. doi: 10.1073/pnas.0601065103 CrossRefPubMedPubMedCentralGoogle Scholar
  41. Rizzolatti G, Luppino G, Matelli M (1998) The organization of the cortical motor system: new concepts. Electroencephalogr Clin Neurophysiol 106:283–296. doi: 10.1016/S0013-4694(98)00022-4 CrossRefPubMedGoogle Scholar
  42. Sacrey LAR, Alaverdashvili M, Whishaw IQ (2009) Similar hand shaping in reaching-for-food (skilled reaching) in rats and humans provides evidence of homology in release, collection, and manipulation movements. Behav Brain Res 204:153–161. doi: 10.1016/j.bbr.2009.05.035 CrossRefPubMedGoogle Scholar
  43. Sofroniew NJ, Flickinger D, King J, Svoboda K (2016) A large field of view two-photon mesoscope with subcellular resolution for in vivo imaging. Elife 5:e14472. doi:  10.7554/eLife.14472 CrossRefPubMedPubMedCentralGoogle Scholar
  44. Tanne-Gariepy J, Rouiller EM, Boussaoud D (2002) Parietal inputs to dorsal versus ventral premotor areas in the macaque monkey: evidence for largely segregated visuomotor pathways. Exp Brain Res 145:91–103. doi: 10.1007/s00221-002-1078-9 CrossRefPubMedGoogle Scholar
  45. Tennant KA, Adkins DL, Donlan NA, Asay AL, Thomas N, Kleim JA, Jones TA (2011) The organization of the forelimb representation of the C57BL/6 mouse motor cortex as defined by intracortical microstimulation and cytoarchitecture. Cereb Cortex 21:865–876. doi: 10.1093/cercor/bhq159 CrossRefPubMedGoogle Scholar
  46. Vesia M, Bolton DA, Mochizuki G, Staines WR (2013) Human parietal and primary motor cortical interactions are selectively modulated during the transport and grip formation of goal-directed hand actions. Neuropsychologia 51:410–417. doi: 10.1016/j.neuropsychologia.2012.11.022 CrossRefPubMedGoogle Scholar
  47. Whishaw IQ (1996) An endpoint, descriptive, and kinematic comparison of skilled reaching in mice (Mus musculus) with rats (Rattus norvegicus). Behav Brain Res 78:101–111. doi: 10.1016/0166-4328(95)00236-7 CrossRefPubMedGoogle Scholar
  48. Whishaw IQ, Gorny B (1994) Arpeggio and fractionated digit movements used in prehension by rats. Behav Brain Res 60:15–24. doi: 10.1016/0166-4328(94)90058-2 CrossRefPubMedGoogle Scholar
  49. Whishaw IQ, Karl JM (2014) The contribution of the reach and the grasp to shaping brain and behaviour. Can J Exp Psychol-Rev Canadienne De Psychol Exp 68:223–235. doi: 10.1037/cep0000042 Google Scholar
  50. Whishaw IQ, Pellis SM (1990) The structure of skilled forelimb reaching in the rat - a proximally driven movement with a single distal rotatory component. Behav Brain Res 41:49–59. doi: 10.1016/0166-4328(90)90053-H CrossRefPubMedGoogle Scholar
  51. Whishaw IQ, Tomie JA (1989) Olfaction directs skilled forelimb reaching in the rat. Behav Brain Res 32:11–21. doi: 10.1016/S0166-4328(89)80067-1 CrossRefPubMedGoogle Scholar
  52. Whishaw IQ, Dringenberg HC, Pellis SM (1992) Spontaneous forelimb grasping in free feeding by rats - motor cortex aids limb and digit positioning. Behav Brain Res 48:113–125. doi: 10.1016/S0166-4328(05)80147-0 CrossRefPubMedGoogle Scholar
  53. Whishaw IQ, Travis SG, Koppe SW, Sacrey LA, Gholamrezaei G, Gorny B (2010) Hand shaping in the rat: conserved release and collection vs. flexible manipulation in overground walking, ladder rung walking, cylinder exploration, and skilled reaching. Behav Brain Res 206:21–31. doi: 10.1016/j.bbr.2009.08.030 CrossRefPubMedGoogle Scholar
  54. Whishaw IQ, Karl JM, Humphrey NK (2016) Dissociation of the reach and the grasp in the destriate (V1) monkey Helen: a new anatomy for the dual visuomotor channel theory of reaching. Exp Brain Res 234:2351–2362. doi: 10.1007/s00221-016-4640-6 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Ian Q. Whishaw
    • 1
    Email author
  • Jamshid Faraji
    • 1
    • 2
  • Jessica Kuntz
    • 1
  • Behroo Mirza Agha
    • 1
  • Mukt Patel
    • 1
  • Gerlinde A. S. Metz
    • 1
  • Majid H. Mohajerani
    • 1
    Email author
  1. 1.Department of Neuroscience, Canadian Centre for Behavioural NeuroscienceUniversity of LethbridgeLethbridgeCanada
  2. 2.Faculty of Nursing and MidwiferyGolestan University of Medical SciencesGorganIslamic Republic of Iran

Personalised recommendations