Experimental Brain Research

, Volume 235, Issue 5, pp 1575–1591 | Cite as

Exploring the temporal dynamics of sustained and transient spatial attention using steady-state visual evoked potentials

Research Article
  • 330 Downloads

Abstract

While the behavioral dynamics as well as the functional network of sustained and transient attention have extensively been studied, their underlying neural mechanisms have most often been investigated in separate experiments. In the present study, participants were instructed to perform an audio–visual spatial attention task. They were asked to attend to either the left or the right hemifield and to respond to deviant transient either auditory or visual stimuli. Steady-state visual evoked potentials (SSVEPs) elicited by two task irrelevant pattern reversing checkerboards flickering at 10 and 15 Hz in the left and the right hemifields, respectively, were used to continuously monitor the locus of spatial attention. The amplitude and phase of the SSVEPs were extracted for single trials and were separately analyzed. Sustained attention to one hemifield (spatial attention) as well as to the auditory modality (intermodal attention) increased the inter-trial phase locking of the SSVEP responses, whereas briefly presented visual and auditory stimuli decreased the single-trial SSVEP amplitude between 200 and 500 ms post-stimulus. This transient change of the single-trial amplitude was restricted to the SSVEPs elicited by the reversing checkerboard in the spatially attended hemifield and thus might reflect a transient re-orienting of attention towards the brief stimuli. Thus, the present results demonstrate independent, but interacting neural mechanisms of sustained and transient attentional orienting.

Keywords

Steady-state visual evoked potential Spatial attention Sustained attention Transient attentional orienting 

Supplementary material

221_2017_4907_MOESM1_ESM.docx (3.4 mb)
Supplementary material 1 (DOCX 3512 KB)

References

  1. Andersen SK, Müller MM (2010) Behavioral performance follows the time course of neural facilitation and suppression during cued shifts of feature-selective attention. Proc Natl Acad Sci 107:13878–13882CrossRefPubMedPubMedCentralGoogle Scholar
  2. Attar CH, Andersen SK, Müller MM (2010) Time course of affective bias in visual attention: convergent evidence from steady-state visual evoked potentials and behavioral data. Neuroimage 53:1326–1333.CrossRefGoogle Scholar
  3. Bruns P, Röder B (2010) Tactile capture of auditory localization: an event-related potential study. Eur J Neurosci 31:1844–1857CrossRefPubMedGoogle Scholar
  4. Busse L, Katzner S, Treue S (2008) Temporal dynamics of neuronal modulation during exogenous and endogenous shifts of visual attention in macaque area MT. Proc Natl Acad Sci USA 105:16380–16385CrossRefPubMedPubMedCentralGoogle Scholar
  5. Chica AB, Lupianez J (2009) Effects of endogenous and exogenous attention on visual processing: an inhibition of return study. Brain Res 1278:75–85CrossRefPubMedGoogle Scholar
  6. Chica AB, Bartolomeo P, Lupianez J (2013) Two cognitive and neural systems for endogenous and exogenous spatial attention. Behav Brain Res 237:107–123CrossRefPubMedGoogle Scholar
  7. Cohen MX, Gulbinaite R (2016) Rhythmic entrainment source separation: Optimizing analyses of neural responses to rhythmic sensory stimulation. Neuroimage 147:43–56CrossRefPubMedGoogle Scholar
  8. Corbetta M, Shulman GL (2002) Control of goal-directed and stimulus-driven attention in the brain. Nat Rev Neurosci 3:201–215CrossRefPubMedGoogle Scholar
  9. David O, Harrison L, Friston KJ (2005) Modelling event-related responses in the brain. Neuroimage 25:756–770CrossRefPubMedGoogle Scholar
  10. de Cheveigné A, Arzounian D (2015) Scanning for oscillations. J Neural Eng 12:066020CrossRefPubMedGoogle Scholar
  11. de Cheveigne A, Simon JZ (2008) Denoising based on spatial filtering. J Neurosci Methods 171:331–339CrossRefPubMedPubMedCentralGoogle Scholar
  12. Desimone R, Duncan J (1995) Neural mechanisms of selective visual attention. Annu Rev Neurosci 18:193–222CrossRefPubMedGoogle Scholar
  13. Ding N, Simon JZ (2009) Neural representations of complex temporal modulations in the human auditory cortex. J Neurophysiol 102:2731–2743CrossRefPubMedPubMedCentralGoogle Scholar
  14. Ding J, Sperling G, Srinivasan R (2006) Attentional modulation of SSVEP power depends on the network tagged by the flicker frequency. Cereb Cortex 16:1016–1029CrossRefPubMedGoogle Scholar
  15. Dmochowski JP, Greaves AS, Norcia AM (2015) Maximally reliable spatial filtering of steady state visual evoked potentials. Neuroimage 109:63–72CrossRefPubMedGoogle Scholar
  16. Doallo S, Lorenzo-Lopez L, Vizoso C, Rodriguez Holguin S, Amenedo E, Bara S, Cadaveira F (2004) The time course of the effects of central and peripheral cues on visual processing: an event-related potentials study. Clin Neurophysiol 115:199–210CrossRefPubMedGoogle Scholar
  17. Doallo S, Lorenzo-Lopez L, Vizoso C, Holguin SR, Amenedo E, Bara S, Cadaveira F (2005) Modulations of the visual N1 component of event-related potentials by central and peripheral cueing. Clin Neurophysiol 116:807–820CrossRefPubMedGoogle Scholar
  18. Driver J, Noesselt T (2008) Multisensory interplay reveals crossmodal influences on ‘sensory-specific’ brain regions, neural responses, and judgments. Neuron 57:11–23CrossRefPubMedPubMedCentralGoogle Scholar
  19. Eimer M, Driver J (2001) Crossmodal links in endogenous and exogenous spatial attention: evidence from event-related brain potential studies. Neurosci Biobehav Rev 25:497–511.CrossRefPubMedGoogle Scholar
  20. Eimer M, Schröger E (1998) ERP effects of intermodal attention and cross-modal links in spatial attention. Psychophysiology 35:313–327CrossRefPubMedGoogle Scholar
  21. Engel A, Fries P, Singer W (2001) Dynamic predictions: oscillations and synchrony in top-down processing. Nat Rev Neurosci 2:704–716CrossRefPubMedGoogle Scholar
  22. Fawcett IP, Barnes GR, Hillebrand A, Singh KD (2004) The temporal frequency tuning of human visual cortex investigated using synthetic aperture magnetometry. Neuroimage 21:1542–1553.CrossRefPubMedGoogle Scholar
  23. Felleman DJ, Van Essen DC (1991) Distributed hierarchical processing in the primate cerebral cortex. Cereb Cortex 1:1–47CrossRefPubMedGoogle Scholar
  24. Feng W, Störmer VS, Martinez A, McDonald JJ, Hillyard SA (2014) Sounds activate visual cortex and improve visual discrimination. J Neurosci 34(29):9817–9824CrossRefPubMedPubMedCentralGoogle Scholar
  25. Fuchs S, Andersen SK, Gruber T, Müller MM (2008) Attentional bias of competitive interactions in neuronal networks of early visual processing in the human brain. Neuroimage 41:1086–1101.CrossRefPubMedGoogle Scholar
  26. Gander PE, Bosnyak DJ, Roberts LE (2010) Acoustic experience but not attention modifies neural population phase expressed in human primary auditory cortex. Hear Res 269(1–2):81–94CrossRefPubMedGoogle Scholar
  27. Genovese CR, Lazar NA, Nichols T (2002) Thresholding of statistical maps in functional neuroimaging using the false discovery rate. Neuroimage 15:870–878CrossRefPubMedGoogle Scholar
  28. Hillyard SA, Hink RF, Schwent VL, Picton TW (1973) Electrical signs of selective attention in the human brain. Science 182(4108):177–180CrossRefPubMedGoogle Scholar
  29. Hillyard SA, Simpson GV, Woods DL, VanVoorhis S, Münte TF (1984) Event-related brain potentials and selective attention to different modalities. In: Reinoso-Suarez F, Ajmone-Marsan C (eds) Cortical integration. Raven Press, New York, pp 395–414Google Scholar
  30. Hopfinger JB, West VM (2006) Interactions between endogenous and exogenous attention on cortical visual processing. Neuroimage 31:774–789CrossRefPubMedGoogle Scholar
  31. Hötting K, Rösler F, Röder B (2003) Crossmodal and intermodal attention modulate event-related brain potentials to tactile and auditory stimuli. Exp Brain Res 148:26–37CrossRefPubMedGoogle Scholar
  32. Jacoby O, Hall SE, Mattingley JB (2012) A crossmodal crossover: opposite effects of visual and auditory perceptual load on steady-state evoked potentials to irrelevant visual stimuli. Neuroimage 61(4): 1050–1058.CrossRefPubMedGoogle Scholar
  33. Jervis BW, Nichols MJ, Johnson TE, Allen E, Hudson NR (1983) A fundamental investigation of the composition of auditory evoked potentials. IEEE Trans Biomed Eng 30:43–50CrossRefPubMedGoogle Scholar
  34. Jonides J (1981) Voluntary versus automatic control over the mind’s eye’s movement. Atten Perform IX(9):187–203Google Scholar
  35. Kashiwase Y, Matsumiya K, Kuriki I, Shioiri S (2012) Time courses of attentional modulation in neural amplification and synchronization measured with steady-state visual-evoked potentials. J Cogn Neurosci 24(8):1779–1793CrossRefPubMedGoogle Scholar
  36. Kastner S, Ungerleider LG (2000) Mechanisms of visual attention in the human cortex. Annu Rev Neurosci 23:315–341CrossRefPubMedGoogle Scholar
  37. Keitel C, Schröger E, Saupe K, Müller MM (2011) Sustained selective intermodal attention modulates processing of language-like stimuli. Exp Brain Res 213(2–3):321–327CrossRefPubMedGoogle Scholar
  38. Keitel C, Maess B, Schröger E, Müller MM (2013) Early visual and auditory processing rely on modality-specific attentional resources. Neuroimage 70(C), 240–249.CrossRefPubMedGoogle Scholar
  39. Keitel C, Quigley C, Ruhnau P (2014) Stimulus-driven brain oscillations in the alpha range: entrainment of intrinsic rhythms or frequency-following response? J Neurosci 34(31):10137–10140CrossRefPubMedPubMedCentralGoogle Scholar
  40. Kim YJ, Grabowecky M, Paller KA, Muthu K, Suzuki S (2007) Attention induces synchronization-based response gain in steady-state visual evoked potentials. Nat Neurosci 10:117–125CrossRefPubMedGoogle Scholar
  41. Klein RM (2000) Inhibition of return. Trends Cogn Sci 4:138–147CrossRefPubMedGoogle Scholar
  42. Klimesch W (2012) Alpha-band oscillations, attention, and controlled access to stored information. Trends Cogn Sci 16:606–617CrossRefPubMedPubMedCentralGoogle Scholar
  43. Klimesch W, Sauseng P, Hanslmayr S (2007) EEG alpha oscillations: the inhibition-timing hypothesis. Brain Res Rev 53:63–88CrossRefPubMedGoogle Scholar
  44. Lakatos P, O’Connell MN, Barczak A, Mills A, Javitt DC, Schroeder CE (2009) The leading sense: supramodal control of neurophysiological context by attention. Neuron 64:419–430CrossRefPubMedPubMedCentralGoogle Scholar
  45. Landau AN, Esterman M, Robertson LC, Bentin S, Prinzmetal W (2007) Different effects of voluntary and involuntary attention on EEG activity in the gamma band. J Neurosci 27:11986–11990CrossRefPubMedPubMedCentralGoogle Scholar
  46. Lopes da Silva FH (1998) Event-related potentials: methodology and quantification. In: Niedermeyer E, Lopes da Silva FH (eds) Electroencephalography: basic principles, clinical applications and related fields, 4th edn. Williams and Wilkins, Baltimore, pp 947–957Google Scholar
  47. Luo H, Tian X, Song K, Zhou K, Poeppel D (2013) Neural response phase tracks how listeners learn new acoustic representations. Curr Biol 23:968–974CrossRefPubMedGoogle Scholar
  48. Mäkinen V, Tiitinen H, May P (2005) Auditory event-related responses are generated independently of ongoing brain activity. Neuroimage 24:961–968CrossRefPubMedGoogle Scholar
  49. Mathewson KE, Lleras A, Beck DM, Fabiani M, Ro T, Gratton G (2011) Pulsed out of awareness: EEG alpha oscillations represent a pulsed-inhibition of ongoing cortical processing. Front Psychol 2:99CrossRefPubMedPubMedCentralGoogle Scholar
  50. McDonald JJ, Teder-Sälejärvi WA, Di Russo F, Hillyard SA (2003) Neural substrates of perceptual enhancement by cross-modal spatial attention. J Cogn Neurosci 15:10–19CrossRefPubMedGoogle Scholar
  51. McDonald JJ, Teder-Sälejärvi WA, Di Russo F, Hillyard SA (2005) Neural basis of auditory-induced shifts in visual time-order perception. Nat Neurosci 8:1197–1202CrossRefPubMedGoogle Scholar
  52. McDonald JJ, Störmer VS, Martinez A, Feng W, Hillyard SA (2013) Salient sounds activate human visual cortex automatically. J Neurosci 33:9194–9201CrossRefPubMedPubMedCentralGoogle Scholar
  53. Moratti S, Clementz B, Gao Y, Ortiz T, Keil A (2007) Neural mechanisms of evoked oscillations: Stability and interaction with transient events. Hum Brain Mapp 28:1318–1333CrossRefPubMedGoogle Scholar
  54. Morgan ST, Hansen JC, Hillyard SA (1996) Selective attention to stimulus location modulates the steady-state visual evoked potential. Proc Natl Acad Sci USA 93:4770–4774CrossRefPubMedPubMedCentralGoogle Scholar
  55. Müller HJ, Rabbitt PM (1989) Reflexive and voluntary orienting of visual attention: time course of activation and resistance to interruption. J Exp Psychol Hum Percept Perform 15(2):315–330CrossRefPubMedGoogle Scholar
  56. Müller MM, Picton TW, Valdes-Sosa P, Riera J, Teder-Sälejärvi WA, Hillyard SA (1998a) Effects of spatial selective attention on the steady-state visual evoked potential in the 20–28 Hz range. Brain Res Cogn Brain Res 6:249–261CrossRefPubMedGoogle Scholar
  57. Müller MM, Teder-Sälejärvi W, Hillyard SA (1998b) The time course of cortical facilitation during cued shifts of spatial attention. Nat Neurosci 1:631–634CrossRefPubMedGoogle Scholar
  58. Müller MM, Andersen SK, Keil A (2008) Time course of competition for visual processing resources between emotional pictures and foreground task. Cereb Cortex 18(8):1892–1899CrossRefPubMedGoogle Scholar
  59. Nakayama K, Mackeben M (1989) Sustained and transient components of focal visual attention. Vis Res 29(11):1631–1647CrossRefPubMedGoogle Scholar
  60. Naue N, Rach S, Struber D, Huster RJ, Zaehle T, Korner U, Herrmann CS (2011) Auditory event-related response in visual cortex modulates subsequent visual responses in humans. J Neurosci 31:7729–7736CrossRefPubMedGoogle Scholar
  61. Nikulin VV, Nolte G, Curio G (2011) A novel method for reliable and fast extractionof neuronal EEG/MEG oscillations on the basis of spatio-spectral decomposition. Neuroimage 55:1528–1535CrossRefPubMedGoogle Scholar
  62. Norcia AM, Appelbaum LG, Ales JM, Cottereau BR, Rossion B (2015) The steady-state visual evoked potential in vision research: a review. J Vis 15(6): 4, 1–46.Google Scholar
  63. Oostenveld R, Fries P, Maris E, Schoffelen JM (2011) FieldTrip: Open source software for advanced analysis of MEG, EEG, and invasive electrophysiological data. Comput Intell Neurosci 2011:156869CrossRefPubMedGoogle Scholar
  64. Painter DR, Dux PE, Travis SL, Mattingley JB (2014) Neural responses to target features outside a search array are enhanced during conjunction but not unique-feature search. J Neurosci 34(9):3390–3401CrossRefPubMedGoogle Scholar
  65. Parks NA, Hilimire MR, Corballis PM (2011) Steady-state signatures of visual perceptual load, multimodal distractor filtering, and neural competition. J Cogn Neurosci 23(5):1113–1124CrossRefPubMedGoogle Scholar
  66. Peelen MV, Heslenfeld DJ, Theeuwes J (2004) Endogenous and exogenous attention shifts are mediated by the same large-scale neural network. Neuroimage 22:822–830CrossRefPubMedGoogle Scholar
  67. Porcu E, Keitel C, Müller MM (2014) Visual, auditory and tactile stimuli compete for early sensory processing capacities within but not between senses. Neuroimage 97:224–235CrossRefPubMedGoogle Scholar
  68. Posner MI, Cohen Y (1984) Components of visual orienting. Atten Perform X Control Lang Process 32:531–556.Google Scholar
  69. Regan D (1977) Steady-state evoked potentials. J Opt Soc Am 67:1475–1489CrossRefPubMedGoogle Scholar
  70. Regan D (1989) Human brain electrophysiology: evoked potentials and evoked magnetic fields in science and medicine. Elsevier, New YorkGoogle Scholar
  71. Rosen AC, Rao SM, Caffarra P, Scaglioni A, Bobholz JA, Woodley SJ, Hammeke TA, Cunningham JM, Prieto TE, Binder JR (1999) Neural basis of endogenous and exogenous spatial orienting. A functional MRI study. J Cogn Neurosci 11:135–152CrossRefPubMedGoogle Scholar
  72. Salinas E, Sejnowski TJ (2001) Correlated neuronal activity and the flow of neural information. Nat Rev Neurosci 2:539–550CrossRefPubMedPubMedCentralGoogle Scholar
  73. Saupe K, Schröger E, Andersen SK, Müller MM (2009) Neural mechanisms of intermodal sustained selective attention with concurrently presented auditory and visual stimuli. Front Hum Neurosci 3: 58CrossRefPubMedPubMedCentralGoogle Scholar
  74. Sauseng P, Klimesch W (2008) What does phase information of oscillatory brain activity tell us about cognitive processes? Neurosci Biobehav Rev 32(5):1001–1013CrossRefPubMedGoogle Scholar
  75. Sauseng P, Klimesch W, Gruber WR, Hanslmayr S, Freunberger R, Doppelmayr M (2007) Are event-related potential components generated by phase resetting of brain oscillations? A critical discussion. Neuroscience 146:1435–1444CrossRefPubMedGoogle Scholar
  76. Schroeder CE, Lakatos P, Kajikawa Y, Partan S, Puce A (2008) Neuronal oscillations and visual amplification of speech. Trends Cogn Sci Regul 12:106–113CrossRefGoogle Scholar
  77. Schyns PG, Thut G, Gross J (2011) Cracking the code of oscillatory activity. Plos Biol 9:e1001064.CrossRefPubMedPubMedCentralGoogle Scholar
  78. Senkowski D, Schneider T, Foxe J, Engel A (2008) Crossmodal binding through neural coherence: implications for multisensory processing. Trends Neurosci 31:401–409CrossRefPubMedGoogle Scholar
  79. Sieben K, Roder B, Hanganu-Opatz IL (2013) Oscillatory entrainment of primary somatosensory cortex encodes visual control of tactile processing. J Neurosci 33:5736–5749CrossRefPubMedGoogle Scholar
  80. Störmer VS, Green JJ, McDonald JJ (2009) Tracking the voluntary control of auditory spatial attention with event-related brain potentials. Psychophysiology 46:357–366CrossRefPubMedGoogle Scholar
  81. Störmer VS, Feng W, Martinez A, McDonald JJ, Hillyard SA (2016) Salient, irrelevant sounds reflexively induce alpha rhythm desynchronization in parallel with slow potential shifts in visual cortex. J Cogn Neurosci 28(3):433–445CrossRefPubMedGoogle Scholar
  82. Talsma D, Doty T, Strowd R, Woldorff M (2006) Attentional capacity for processing concurrent stimuli is larger across sensory modalities than within a modality. Psychophysiology 43(6):541–549CrossRefPubMedGoogle Scholar
  83. Thorne JD, De Vos M, Viola FC, Debener S (2011) Cross-modal phase reset predicts auditory task performance in humans. J Neurosci 31:3853–3861CrossRefPubMedGoogle Scholar
  84. Thorpe SG, Nunez PL, Srinivasan R (2007) Identification of wave-like spatial structure in the SSVEP: comparison of simultaneous EEG and MEG. Stat Med 26(21):3911–3926CrossRefPubMedGoogle Scholar
  85. Vialatte F-B, Maurice M, Dauwels J, Cichocki A (2010) Steady-state visually evoked potentials: Focus on essential paradigms and future perspectives. Prog Neurobiol 90(4):418–438CrossRefPubMedGoogle Scholar
  86. Wang Y, Ding N, Ahmar N, Xiang J, Poeppel D, Simon JZ (2012) Sensitivity to temporal modulation rate and spectral bandwidth in the human auditory system: MEG evidence. J Neurophysiol 107:2033–2041CrossRefPubMedGoogle Scholar
  87. Zhang D, Hong B, Gao X, Gao S, Röder B (2011) Exploring steady-state visual evoked potentials as an index for intermodal and crossmodal spatial attention. Psychophysiology 48:665–675CrossRefPubMedGoogle Scholar
  88. Zhu D, Bieger J, Molina GG, Aarts RM (2010) A survey of stimulation methods used in SSVEP-based BCIs. Comput Intell Neurosci 1:702357Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Dan Zhang
    • 1
    • 2
    • 3
  • Bo Hong
    • 2
  • Shangkai Gao
    • 2
  • Brigitte Röder
    • 1
  1. 1.Biological Psychology and NeuropsychologyUniversity of HamburgHamburgGermany
  2. 2.Department of Biomedical Engineering, School of MedicineTsinghua UniversityBeijingChina
  3. 3.Department of Psychology, School of Social SciencesTsinghua UniversityBeijingChina

Personalised recommendations