Advertisement

Experimental Brain Research

, Volume 235, Issue 4, pp 1107–1118 | Cite as

Effort provides its own reward: endeavors reinforce subjective expectation and evaluation of task performance

  • Lei Wang
  • Jiehui Zheng
  • Liang Meng
Research Article

Abstract

Although many studies have investigated the relationship between the amount of effort invested in a certain task and one’s attitude towards the subsequent reward, whether exerted effort would impact one’s expectation and evaluation of performance feedback itself still remains to be examined. In the present study, two types of calculation tasks that varied in the required effort were adopted, and we resorted to electroencephalography to probe the temporal dynamics of how exerted effort would affect one’s anticipation and evaluation of performance feedback. In the high-effort condition, a more salient stimulus-preceding negativity was detected during the anticipation stage, which was accompanied with a more salient FRN/P300 complex (a more positive P300 and a less negative feedback-related negativity) in response to positive outcomes in the evaluation stage. These results suggested that when more effort was invested, an enhanced anticipatory attention would be paid toward one’s task performance feedback and that positive outcomes would be subjectively valued to a greater extent.

Keywords

Effort Reward Anticipation Event-related potential Stimulus-preceding negativity Feedback-related negativity 

Notes

Acknowledgements

Lei Wang was supported by the National Natural Science Foundation of China [Grant No. 71471163]. Liang Meng was funded by “Chen Guang” project supported by Shanghai Municipal Education Commission and Shanghai Education Development Foundation [Grant No. 16CG36], and a project from the Planning Fund of Shanghai International Studies University [Grant No. 20161140012].

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

References

  1. Apps MAJ, Grima LL, Manohar S, Husain M (2015) The role of cognitive effort in subjective reward devaluation and risky decision-making. Sci Rep 1–11. doi: 10.1038/srep16880 PubMedPubMedCentralGoogle Scholar
  2. Bandura A (1977) Self-efficacy: toward a unifying theory of behavioral change. Psychol Rev 84:191–215. doi: 10.1037/0033-295X.84.2.191 CrossRefPubMedGoogle Scholar
  3. Bellebaum C, Polezzi D, Daum I (2010) Neuropsychologia It is less than you expected: the feedback-related negativity reflects violations of reward magnitude expectations. Neuropsychologia 48:3343–3350. doi: 10.1016/j.neuropsychologia.2010.07.023 CrossRefPubMedGoogle Scholar
  4. Böcker KBE, Brunia CHM, Van den Berg-Lenssen MMC (1994) A spatiotemporal dipole model of the stimulus preceding negativity (SPN) prior to feedback stimuli. Brain Topogr 7:71–88. doi: 10.1007/BF01184839 CrossRefPubMedGoogle Scholar
  5. Boehler CN, Hopf J, Krebs RM et al (2011) Task-load-dependent activation of dopaminergic midbrain areas in the Absence of Reward. J Neurosci 31:4955–4961. doi: 10.1523/JNEUROSCI.4845-10.2011 CrossRefPubMedGoogle Scholar
  6. Botvinick MM, Huffstetler S, Mcguire JT (2009) Effort discounting in human nucleus accumbens. Cogn Affect Behav Neurosci 9:16–27. doi: 10.3758/CABN.9.1.16 CrossRefPubMedPubMedCentralGoogle Scholar
  7. Brehm JW, Self EA (1989) The intensity of motivation. Annu Rev Psychol 40:109–131. doi: 10.1146/annurev.psych.40.1.109 CrossRefPubMedGoogle Scholar
  8. Brouwer AM, Hogervorst MA, van Erp JBF et al (2012) Estimating workload using EEG spectral power and ERPs in the n-back task. J Neural Eng 9:45008. doi: 10.1088/1741-2560/9/4/045008 CrossRefGoogle Scholar
  9. Brouwer AM, Hogervorst MA, Holewijn M, van Erp JBF (2014) Evidence for effects of task difficulty but not learning on neurophysiological variables associated with effort. Int J Psychophysiol 93:242–252. doi: 10.1016/j.ijpsycho.2014.05.004 CrossRefPubMedGoogle Scholar
  10. Brunia CHM, Hackley SA, van Boxtel GJM et al (2011) Waiting to perceive: Reward or punishment? Clin Neurophysiol 122:858–868CrossRefPubMedGoogle Scholar
  11. Brunia CHM, van Boxtel GJM, Böcker KBE (2012) Negative slow waves as indices of anticipation: the bereitschaftspotential, the contingent negative variation, and the stimulus-preceding negativity. In: The oxford handbook of event-related potential components. Oxford University Press, New YorkGoogle Scholar
  12. Catena A, Perales JC, Megías A et al (2012) The brain network of expectancy and uncertainty processing. PLoS One. doi: 10.1371/journal.pone.0040252 PubMedPubMedCentralGoogle Scholar
  13. Croxson PL, Walton ME, Reilly JXO et al (2009) Effort-based cost—benefit valuation and the human brain. J Neurosci 29:4531–4541. doi: 10.1523/JNEUROSCI.4515-08.2009 CrossRefPubMedPubMedCentralGoogle Scholar
  14. Donkers FCL, van Boxtel GJM (2005) Mediofrontal negativities to averted gains and losses in the slot-machine task: a further investigation. J Psychophysiol 19:256–262. doi: 10.1027/0269-8803.19.4.256 CrossRefGoogle Scholar
  15. Dreher JC, Kohn P, Berman KF (2006) Neural coding of distinct statistical properties of reward information in humans. Cereb Cortex 16:561–573. doi: 10.1093/cercor/bhj004 CrossRefPubMedGoogle Scholar
  16. Foti D, Weinberg A, Dien J, Hajcak G (2011) Event-related potential activity in the basal ganglia differentiates rewards from nonrewards: response to commentary. Hum Brain Mapp 32:2267–2269. doi: 10.1002/hbm.21357 CrossRefPubMedGoogle Scholar
  17. Fuentemilla L, Cucurell D, Marco-Pallares J et al (2013) Electrophysiological correlates of anticipating improbable but desired events. Neuroimage 78:135–144. doi: 10.1016/j.neuroimage.2013.03.062 CrossRefPubMedGoogle Scholar
  18. Gehring WJ, Willoughby AR (2002) The medial frontal cortex and the rapid processing of monetary gains and losses. Science 295(5563):2279–2282. doi: 10.1126/science.1066893 CrossRefPubMedGoogle Scholar
  19. Hajcak G, Holroyd CB, Moser JS, Simons RF (2005) Brain potentials associated with expected and unexpected good and bad outcomes. Psychophysiology 42:161–170. doi: 10.1111/j.1469-8986.2005.00278.x CrossRefPubMedGoogle Scholar
  20. Hajcak G, Moser JS, Holroyd CB, Simons RF (2007) It’s worse than you thought: the feedback negativity and violations of reward prediction in gambling tasks. Psychophysiology 44:905–912. doi: 10.1111/j.1469-8986.2007.00567.x CrossRefPubMedGoogle Scholar
  21. Hernandez Lallement J, Kuss K, Trautner P et al (2014) Effort increases sensitivity to reward and loss magnitude in the human brain. Soc Cogn Affect Neurosci 9:342–349. doi: 10.1093/scan/nss147 CrossRefPubMedGoogle Scholar
  22. Janssen O (2000) Job demands, perceptions of effort-reward fariness and innovative work behaviour. J Occup Organ Psychol 73:287–302. doi: 10.1348/096317900167038 CrossRefGoogle Scholar
  23. Kivetz R (2003) The effects of effort and intrinsic motivation on risky choice. Mark Sci 22:477–502CrossRefGoogle Scholar
  24. Kok A (2001) On the utility of P3 amplitude as a measure of processing capacity. Psychophysiology 38:557–577CrossRefPubMedGoogle Scholar
  25. Kotani Y, Ohgami Y, Ishiwata T et al (2015) Source analysis of stimulus-preceding negativity constrained by functional magnetic resonance imaging. Biol Psychol 111:53–64. doi: 10.1016/j.biopsycho.2015.08.005 CrossRefPubMedGoogle Scholar
  26. Kraus D, Horowitz-kraus T (2014) The effect of learning on feedback-related potentials in adolescents with Dyslexia: an EEG-ERP study. PLoS One 9:1–10. doi: 10.1371/journal.pone.0100486 Google Scholar
  27. Krebs RM, Boehler CN, Roberts KC et al (2012) The involvement of the dopaminergic midbrain and cortico-striatal-thalamic circuits in the integration of reward prospect and attentional task demands. Cereb Cortex 22:607–615. doi: 10.1093/cercor/bhr134 CrossRefPubMedGoogle Scholar
  28. Kroemer NB, Guevara A, Ciocanea Teodorescu I et al (2014) Balancing reward and work: anticipatory brain activation in NAcc and VTA predict effort differentially. Neuroimage 102:510–519. doi: 10.1016/j.neuroimage.2014.07.060 CrossRefPubMedGoogle Scholar
  29. Kurniawan IT, Guitart-masip M, Dayan P, Dolan RJ (2013) Effort and valuation in the brain: the effects of anticipation and execution. J Neurosci 33:6160–6169. doi: 10.1523/JNEUROSCI.4777-12.2013 CrossRefPubMedPubMedCentralGoogle Scholar
  30. Leng Y, Zhou X (2010) Modulation of the brain activity in outcome evaluation by interpersonal relationship: An ERP study. Neuropsychologia 48:448–455. doi: 10.1016/j.neuropsychologia.2009.10.002 CrossRefPubMedGoogle Scholar
  31. Lopez-Calderon J, Luck SJ (2014) ERPLAB: an open-source toolbox for the analysis of event-related potentials. Front Hum Neurosci 8:213. doi: 10.3389/fnhum.2014.00213 CrossRefPubMedPubMedCentralGoogle Scholar
  32. Luck SJ (2005) Ten simple rules for designing ERP experiments. Event Relat Potentials Methods Handb. doi: 10.1371/journal.pcbi.0020012 Google Scholar
  33. Ma Q, Meng L, Wang L, Shen Q (2014) I endeavor to make it: effort increases valuation of subsequent monetary reward. Behav Brain Res 261:1–7. doi: 10.1016/j.bbr.2013.11.045 CrossRefPubMedGoogle Scholar
  34. Ma Q, Meng L, Zhang Z et al (2015) You did not mean it: perceived good intentions alleviate sense of unfairness. Int J Psychophysiol. doi: 10.1016/j.ijpsycho.2015.03.011 Google Scholar
  35. Masaki H, Takeuchi S, Gehring WJ et al (2006) Affective-motivational influences on feedback-related ERPs in a gambling task. Brain Res 1105:110–121. doi: 10.1016/j.brainres.2006.01.022 CrossRefPubMedGoogle Scholar
  36. Meng L, Ma Q (2015) Live as we choose: The role of autonomy support in facilitating intrinsic motivation. Int J Psychophysiol 98:441–447. doi: 10.1016/j.ijpsycho.2015.08.009 CrossRefPubMedGoogle Scholar
  37. Meng L, Pei G, Zheng J, Ma Q (2016) Close games versus blowouts: optimal challenge reinforces one’ s intrinsic motivation to win. Int J Psychophysiol 110:102–108. doi: 10.1016/j.ijpsycho.2016.11.001 CrossRefPubMedGoogle Scholar
  38. Miltner WHR, Braun CH, Coles MGH (1997) Event-related brain potentials following incorrect feedback in a time-estimation task: evidence for a “Generic” neural system for error detection. J Cogn Neurosci 9:788–798. doi: 10.1162/jocn.1997.9.6.788 CrossRefPubMedGoogle Scholar
  39. Muehlbacher S, Kirchler E (2009) Origin of endowments in Public Good Games: the impact of effort on contributions origin of Endowments in Public Good Games: the impact of effort on contributions. J Neurosci Psychol Econ 2:59–67. doi: 10.1037/a0015458 CrossRefGoogle Scholar
  40. Myers D (2006) Social psychology, 8th edn. McGraw-Hill Education, New YorkGoogle Scholar
  41. Nielsen MBD, Madsen IEH, Bültmann U et al (2013) Effort-reward imbalance at work and risk of long-term sickness absence in the Danish workforce. J Occup Environ Med 55:454–459. doi: 10.1097/JOM.0b013e31827dba5b CrossRefPubMedGoogle Scholar
  42. Nieuwenhuis S, Aston-Jones G, Cohen JD (2005) Decision making, the P3, and the locus coeruleus-norepinephrine system. Psychol Bull 131:510–532. doi: 10.1037/0033-2909.131.4.510 CrossRefPubMedGoogle Scholar
  43. Novak BK, Novak KD, Lynam DR, Foti D (2016) Individual differences in the time course of reward processing: stage-specific links with depression and impulsivity. Biol Psychol 119:79–90. doi: 10.1016/j.biopsycho.2016.07.008 CrossRefPubMedGoogle Scholar
  44. Patall EA, Cooper H, Robinson JC (2008) The effects of choice on intrinsic motivation and related outcomes: a meta-analysis of research findings. Psychol Bull 134:270–300. doi: 10.1037/0033-2909.134.2.270 CrossRefPubMedGoogle Scholar
  45. Pei G, Meng L (2016) What do we expect from a beauty? facial attractiveness of the opposite sex gives rise to discrepancies in males’ anticipation and demand. Int J Psychol 1–6. doi: 10.1002/ijop.12393 PubMedGoogle Scholar
  46. Phillips PEM, Walton ME, Jhou TC (2007) Calculating utility: preclinical evidence for cost—benefit analysis by mesolimbic dopamine. Psychopharmacology (Berl) 191:483–495. doi: 10.1007/s00213-006-0626-6 CrossRefGoogle Scholar
  47. Pornpattananangkul N, Nusslock R (2015) Motivated to win: relationship between anticipatory and outcome reward-related neural activity. Brain Cogn 100:21–40. doi: 10.1016/j.bandc.2015.09.002 CrossRefPubMedPubMedCentralGoogle Scholar
  48. Proudfit GH (2015) The reward positivity: from basic research on reward to a biomarker for depression. Psychophysiology 52:449–459. doi: 10.1111/psyp.12370 CrossRefPubMedGoogle Scholar
  49. Rudebeck PH, Walton ME, Smyth AN et al (2006) Separate neural pathways process different decision costs. Nat Neurosci 9:1161–1169. doi: 10.1038/nn1756 CrossRefPubMedGoogle Scholar
  50. San Martín R (2012) Event-related potential studies of outcome processing and feedback-guided learning. Front Hum Neurosci 6:304. doi: 10.3389/fnhum.2012.00304
  51. Schevernels H, Krebs RM, Santens P et al (2014) Task preparation processes related to reward prediction precede those related to task-difficulty expectation. Neuroimage 84:639–647. doi: 10.1016/j.neuroimage.2013.09.039 CrossRefPubMedGoogle Scholar
  52. Schevernels H, Bombeke K, Krebs RM, Boehler CN (2016) Preparing for (valenced) action: the role of differential effort in the orthogonalized go/no-go task. Psychophysiology 53:186–197. doi: 10.1111/psyp.12558 CrossRefPubMedGoogle Scholar
  53. Schupp HT, Arne O, Jungho M et al (2004) The facilitated processing of threatening faces: an ERP analysis. Emotion 4:189–200. doi: 10.1037/1528-3542.4.2.189 CrossRefPubMedGoogle Scholar
  54. Siegrist J, Starke D, Chandola T et al (2004) The measurement of effort-reward imbalance at work: European comparisons. Soc Sci Med 58:1483–1499. doi: 10.1016/S0277-9536(03)00351-4 CrossRefPubMedGoogle Scholar
  55. Threadgill AH, Gable PA (2016) Approach-motivated pregoal states enhance the reward positivity. Psychophysiology 53:733–738. doi: 10.1111/psyp.12611 CrossRefPubMedGoogle Scholar
  56. Vassena E, Silvetti M, Boehler CN et al (2014) Overlapping neural systems represent cognitive effort and reward anticipation. PLoS One 9:1–9. doi: 10.1371/journal.pone.0091008 CrossRefGoogle Scholar
  57. Vassena E, Cobbaert S, Andres M et al (2015) NeuroImage unsigned value prediction-error modulates the motor system in absence of choice. Neuroimage 122:73–79. doi: 10.1016/j.neuroimage.2015.07.081 CrossRefPubMedGoogle Scholar
  58. Vostroknutov A, Tobler PN, Rustichini A (2012) Causes of social reward differences encoded in human brain. J Neurophysiol 107:1403–1412. doi: 10.1152/jn.00298.2011 CrossRefPubMedGoogle Scholar
  59. Wardle MC, Fitzgerald D a., Angstadt M et al (2013) The caudate signals bad reputation during trust decisions. PLoS One 8:1–9. doi: 10.1371/journal.pone.0068884 CrossRefGoogle Scholar
  60. Weinberg A, Riesel A, Proudfit GH (2014) Show me the money: the impact of actual rewards and losses on the feedback negativity. Brain Cogn 87:134–139. doi: 10.1016/j.bandc.2014.03.015 CrossRefPubMedGoogle Scholar
  61. Wu Y, Zhou X (2009) The P300 and reward valence, magnitude, and expectancy in outcome evaluation. Brain Res 1286:114–122. doi: 10.1016/j.brainres.2009.06.032 CrossRefPubMedGoogle Scholar
  62. Yeung N, Sanfey AG (2004) Independent coding of reward magnitude and valence in the human brain. J Neurosci 24:6258–6264. doi: 10.1523/JNEUROSCI.4537-03.2004 CrossRefPubMedGoogle Scholar
  63. Yeung N, Holroyd CB, Cohen JD (2005) ERP correlates of feedback and reward processing in the presence and absence of response choice. Cereb Cortex 15:535–544. doi: 10.1093/cercor/bhh153 CrossRefPubMedGoogle Scholar
  64. Zheng Y, Li Q, Wang K et al (2015) Contextual valence modulates the neural dynamics of risk processing. Psychophysiology 52:895–904. doi: 10.1111/psyp.12415 CrossRefPubMedGoogle Scholar
  65. Zhou Z, Yu R, Zhou X (2010) To do or not to do? Action enlarges the FRN and P300 effects in outcome evaluation. Neuropsychologia 48:3606–3613. doi: 10.1016/j.neuropsychologia.2010.08.010 CrossRefPubMedGoogle Scholar
  66. Zink CF, Pagnoni G, Martin-skurski ME et al (2004) Human striatal responses to monetary reward depend on saliency. Neuron 42:509–517CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.School of ManagementZhejiang UniversityHangzhouChina
  2. 2.School of Business and ManagementShanghai International Studies UniversityShanghaiChina
  3. 3.Neuromanagement LabZhejiang UniversityHangzhouChina
  4. 4.Laboratory of Applied Brain and Cognitive SciencesShanghai International Studies UniversityShanghaiChina

Personalised recommendations