Advertisement

Experimental Brain Research

, Volume 235, Issue 4, pp 1097–1105 | Cite as

The effect of motor overflow on bimanual asymmetric force coordination

  • David A. Cunningham
  • Sarah M. Roelle
  • Didier Allexandre
  • Kelsey A. Potter-Baker
  • Vishwanath Sankarasubramanian
  • Jayme S. Knutson
  • Guang H. Yue
  • Andre G. Machado
  • Ela B. Plow
Research Article

Abstract

Motor overflow, typically described in the context of unimanual movements, refers to the natural tendency for a ‘resting’ limb to move during movement of the opposite limb and is thought to be influenced by inter-hemispheric interactions and intra-cortical networks within the ‘resting’ hemisphere. It is currently unknown, however, how motor overflow contributes to asymmetric force coordination task accuracy, referred to as bimanual interference, as there is need to generate unequal forces and corticospinal output for each limb. Here, we assessed motor overflow via motor evoked potentials (MEPs) and the regulation of motor overflow via inter-hemispheric inhibition (IHI) and short-intra-cortical inhibition (SICI) using transcranial magnetic stimulation in the presence of unimanual and bimanual isometric force production. All outcomes were measured in the left first dorsal interosseous (test hand) muscle, which maintained 30% maximal voluntary contraction (MVC), while the right hand (conditioning hand) was maintained at rest, 10, 30, or 70% of its MVC. We have found that as higher forces are generated with the conditioning hand, MEP amplitudes at the active test hand decreased and inter-hemispheric inhibition increased, suggesting reduced motor overflow in the presence of bimanual asymmetric forces. Furthermore, we found that subjects with less motor overflow (i.e., reduced MEP amplitudes in the test hemisphere) demonstrated poorer accuracy in maintaining 30% MVC across all conditions. These findings suggest that motor overflow may serve as an adaptive substrate to support bimanual asymmetric force coordination.

Keywords

Bimanual interference Motor overflow Transcranial magnetic stimulation Inter-hemispheric inhibition Intra-cortical inhibition 

Notes

Acknowledgements

This work is supported by the Clinical and Translational Science Collaborative (RPC 2014-1067) to D.A.C as well as by the National Institutes of Health (1K01HD069504) and American Heart Association (13BGIA17120055) to E.P.

References

  1. Addamo PK, Farrow M, Hoy KE et al (2007) The effects of age and attention on motor overflow production—a review. Brain Res Rev 54:189–204CrossRefPubMedGoogle Scholar
  2. Beaule V, Tremblay S, Theoret H (2012) Interhemispheric control of unilateral movement. Neural Plast 2012:627816. doi: 10.1155/2012/627816 CrossRefPubMedPubMedCentralGoogle Scholar
  3. Bland JM, Altman DG (1995) Calculating correlation coefficients with repeated observations: Part 1–correlation within subjects. BMJ 310:446. doi: 10.1136/bmj.310.6977.446 CrossRefPubMedPubMedCentralGoogle Scholar
  4. Diedrichsen J, Hazeltine E, Nurss WK, Ivry RB (2003) The role of the corpus callosum in the coupling of bimanual isometric force pulses. J Neurophysiol 90:2409–2418. doi: 10.1152/jn.00250.2003 CrossRefPubMedGoogle Scholar
  5. Fling BW, Seidler RD (2012) Task-dependent effects of interhemispheric inhibition on motor control. Behav Brain Res 226:211–217. doi: 10.1016/j.bbr.2011.09.018 CrossRefPubMedGoogle Scholar
  6. Gerloff C, Richard J, Hadley J et al (1998) Functional coupling and regional activation of human cortical motor areas during simple, internally paced and externally paced finger movements. Brain 121:1513–1531. doi: 10.1093/brain/121.8.1513 CrossRefPubMedGoogle Scholar
  7. Hortobágyi T, Taylor JL, Petersen NT et al (2003) Changes in segmental and motor cortical output with contralateral muscle contractions and altered sensory inputs in humans. J Neurophysiol 90:2451–2459. doi: 10.1152/jn.01001.2002 CrossRefPubMedGoogle Scholar
  8. Hu X, Newell KM (2011) Dependence of asymmetrical interference on task demands and hand dominance in bimanual isometric force tasks. Exp Brain Res 208:533–541. doi: 10.1007/s00221-010-2502-1 CrossRefPubMedGoogle Scholar
  9. Hu X, Newell KM (2012) Asymmetric interference associated with force amplitude and hand dominance in bimanual constant isometric force. Motor Control 16:297–316. doi: 10.1007/s00221-010-2502-1 CrossRefPubMedGoogle Scholar
  10. Kenway LC, Bisset LM, Kavanagh JJ (2014a) Removing visual feedback for a single limb alters between-limb force tremor relationships during isometric bilateral contractions. Exp Brain Res 233:115–124. doi: 10.1007/s00221-014-4098-3
  11. Kenway LC, Bisset LM, Kavanagh JJ (2014b) The effect of isometric contraction on the regulation of force tremor in the contralateral limb. Neurosci Lett 558:126–131. doi: 10.1016/j.neulet.2013.11.013
  12. Meyer B-U, Roricht S, von Einsiedel HG et al (1995) Inhibitory and excitatory interhemispheric transfers between motor cortical areas in normal humans and patiens with abnormalities of the corpus callosum. Brain 118:429–440CrossRefPubMedGoogle Scholar
  13. Muellbacher W, Facchini S, Boroojerdi B, Hallett M (2000) Changes in motor cortex excitability during ipsilateral hand muscle activation in humans. Clin Neurophysiol 111:344–349. doi: 10.1016/S1388-2457(99)00243-6 CrossRefPubMedGoogle Scholar
  14. Oldfield RC (1971) The assessment and analysis of handedness: The Edinburgh inventory. Neuropsychologia 9:97–113. doi: 10.1016/0028-3932(71)90067-4 CrossRefPubMedGoogle Scholar
  15. Ortu E, Deriu F, Suppa A et al (2008) Effects of volitional contraction on intracortical inhibition and facilitation in the human motor cortex. J Physiol 586:5147–5159. doi: 10.1113/jphysiol.2008.158956 CrossRefPubMedPubMedCentralGoogle Scholar
  16. Perez MA, Cohen LG (2008) Mechanisms underlying functional changes in the primary motor cortex ipsilateral to an active hand. J Neurosci 28:5631–5640. doi: 10.1523/JNEUROSCI.0093-08.2008 CrossRefPubMedPubMedCentralGoogle Scholar
  17. Rinkenauer G, Ulrich R, Wing AM (2001) Brief bimanual force pulses: correlations between the hands in force and time. J Exp Psychol Hum Percept Perform 27:1485–1497. doi: 10.1037/0096-1523.27.6.1485 CrossRefPubMedGoogle Scholar
  18. Rossi S, Hallett M, Rossini PM et al (2009) Safety, ethical considerations, and application guidelines for the use of transcranial magnetic stimulation in clinical practice and research. Clin Neurophysiol 120:2008–2039. doi: 10.1016/j.clinph.2009.08.016 CrossRefPubMedPubMedCentralGoogle Scholar
  19. Stedman A, Davey NJ, Ellaway PH (1998) Facilitation of human first dorsal interosseous muscle responses to transcranial magnetic stimulation during voluntary contraction of the contralateral homonymous muscle. Muscle Nerve 21:1033–1039. doi: 10.1002/(SICI)1097-4598(199808)21:8<1033::AID-MUS7>3.0.CO;2-9 CrossRefPubMedGoogle Scholar
  20. Steglich C, Heuer H, Spijkers W, Kleinsorge T (1999) Bimanual coupling during the specification of isometric forces. Exp Brain Res 129:302–316. doi: 10.1007/s002210050900 CrossRefPubMedGoogle Scholar
  21. Stinear CM, Byblow WD (2003) Role of intracortical inhibition in selective hand muscle activation. J Neurophysiol 89:2014–2020. doi: 10.1152/jn.00925.2002 CrossRefPubMedGoogle Scholar
  22. Stinear JW, Byblow WD (2004) An interhemispheric asymmetry in motor cortex disinhibition during bimanual movement. Brain Res 1022:81–87. doi: 10.1016/j.brainres.2004.06.062 CrossRefPubMedGoogle Scholar
  23. Swinnen SP, Walter CB (1991) Toward a movement dynamics perspective on dual-task performance. Hum Factors J Hum Factors Ergon Soc 33:367–387. doi: 10.1177/001872089103300401 Google Scholar
  24. Tinazzi M, Zanette G (1998) Modulation of ipsilateral motor cortex in man during unimanual finger movements of different complexities. Neurosci Lett 244:121–124. doi: 10.1016/S0304-3940(98)00150-5 CrossRefPubMedGoogle Scholar
  25. Yedimenko J a, Perez M a (2010) The effect of bilateral isometric forces in different directions on motor cortical function in humans. J Neurophysiol 104:2922–2931. doi: 10.1152/jn.00020.2010 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • David A. Cunningham
    • 1
    • 2
  • Sarah M. Roelle
    • 2
  • Didier Allexandre
    • 1
  • Kelsey A. Potter-Baker
    • 2
  • Vishwanath Sankarasubramanian
    • 2
  • Jayme S. Knutson
    • 3
  • Guang H. Yue
    • 1
  • Andre G. Machado
    • 4
  • Ela B. Plow
    • 2
    • 4
  1. 1.Human Performance and Engineering Research, Kessler FoundationWest OrangeUSA
  2. 2.Department of Biomedical EngineeringLerner Research Institute, Cleveland ClinicClevelandUSA
  3. 3.Physical Medicine and RehabilitationMetroHealth Rehabilitation Institute, Case Western Reserve UniversityClevelandUSA
  4. 4.Center for Neurological Restoration, Department of Physical Medicine and RehabilitationNeurological Institute, Cleveland ClinicClevelandUSA

Personalised recommendations