Experimental Brain Research

, Volume 235, Issue 3, pp 851–859 | Cite as

Transcranial direct current stimulation (tDCS) to the supplementary motor area (SMA) influences performance on motor tasks

  • K. E. Hupfeld
  • C. J. KetchamEmail author
  • H. D. Schneider
Research Article


The supplementary motor area (SMA) is believed to be highly involved in the planning and execution of both simple and complex motor tasks. This study aimed to examine the role of the SMA in planning the movements required to complete reaction time, balance, and pegboard tasks using anodal transcranial direct current stimulation (tDCS), which passes a weak electrical current between two electrodes, in order to modulate neuronal activity. Twenty healthy adults were counterbalanced to receive either tDCS (experimental condition) or no tDCS (control condition) for 3 days. During administration of tDCS, participants performed a balance task significantly faster than controls. After tDCS, subjects significantly improved their simple and choice reaction time. These results demonstrate that the SMA is highly involved in planning and executing fine and gross motor skill tasks and that tDCS is an effective modality for increasing SMA-related performance on these tasks. The findings may be generalizable and therefore indicate implications for future interventions using tDCS as a therapeutic tool.


Transcranial direct current stimulation (tDCS) Supplementary motor area (SMA) Motor planning Reaction time Balance 


  1. Ardolino G, Bossi B, Barbieri S, Priori A (2005) Non-synaptic mechanisms underlie the after-effects of cathodal transcutaneous direct current stimulation of the human brain. J Physiol 568:653–663. doi: 10.1113/jphysiol.2005.088310 CrossRefPubMedPubMedCentralGoogle Scholar
  2. Benninger DH, Lomarev M, Lopez G, Wassermann EM, Li X, Considine E, Hallett M (2010) Transcranial direct current stimulation for the treatment of Parkinson’s disease. J Neurol Neurosurg Psychiatry 81:1105–1111. doi: 10.1136/jnnp.2009.202556 CrossRefPubMedPubMedCentralGoogle Scholar
  3. Boggio PS, Castro LO, Savagim EA, Braite R, Cruz VC, Rocha RR, Rigonatti SP, Silva MT, Fregni F (2006) Enhancement of non-dominant hand motor function by anodal transcranial direct current stimulation. Neurosci Lett 404:232–236. doi: 10.1016/j.neulet.2006.05.051 CrossRefPubMedGoogle Scholar
  4. Bolzoni F, Bruttini C, Esposti R, Castellani C, Cavallari P (2015) Transcranial direct current stimulation of the SMA modulates anticipatory postural adjustments without affecting the primary movement. Behav Brain Res 291:407–413. doi: 10.1016/j.bbr.2015.05.044 CrossRefPubMedGoogle Scholar
  5. Bonelli RM, Cummings JL (2007) Frontal-subcortical circuitry and behavior. Dialogues Clin Neurosci 9:141–151PubMedPubMedCentralGoogle Scholar
  6. Brault MW (2012) Americans with disabilities: 2010. Current Population Reports, US Census BureauGoogle Scholar
  7. Brunoni AR, Boggio PS, Bikson M, Bolognini N, Nitsche MA, Fregni F et al (2012) Clinical research with transcranial direct current stimulation (tDCS): challenges and future directions. Brain Stimul 5:175–195. doi: 10.1016/j.brs.2011.03.002 CrossRefPubMedGoogle Scholar
  8. Carlsen AN, Eagles JS, MacKinnon CD (2015) Transcranial direct current stimulation over the supplementary motor area modulates the preparatory activation level in the human motor system. Behav Brain Res 279:68–75. doi: 10.1016/j.bbr.2014.11.009 CrossRefPubMedGoogle Scholar
  9. Carter MJ, Maslovat D, Carlsen AN (2015) Anodal direct current stimulation applied over the supplementary motor area delays spontaneous antiphase-to-in-phase transitions. J Neurophysiol 113:780–785. doi: 10.1152/jn.00662.2014 CrossRefPubMedGoogle Scholar
  10. Cui RQ, MacKinnon CD (2009) The effect of temporal accuracy constraints on movement-related potentials. Exp Brain Res 194:477–488. doi: 10.1007/s00221-009-1725-5 CrossRefPubMedGoogle Scholar
  11. Cui RQ, Hunter D, Lang W, Deeke L (1999) Neuroimage of voluntary movement: topography of the Bereitschaftspotential, a 64-channel DC current source density study. NeuroImage 9:124–134CrossRefPubMedGoogle Scholar
  12. Della Sala S, Francescani A, Spinnler H (2002) Gait apraxia after bilateral supplementary motor area lesion. J Neurol Neurosurg Psychiatry 72:77–85. doi: 10.1136/jnnp.72.1.77 CrossRefPubMedGoogle Scholar
  13. Filmer HL, Dux PE, Mattingley JB (2014) Applications of transcranial direct current for understanding brain function. Trends Neurosci 37:742–753. doi: 10.1016/j.tins.2014.08.003 CrossRefPubMedGoogle Scholar
  14. Galea JM, Celnik P (2009) Brain polarization enhances the formation and retention of motor memories. J Neurophysiol 102:294–301. doi: 10.1152/jn.00184.2009 CrossRefPubMedPubMedCentralGoogle Scholar
  15. Goble DJ, Coxon JP, Van Impe A, Geurts M, Doumas M, Wenderoth N, Swinnen SP (2011) Brain activity during ankle proprioceptive stimulation predicts balance performance in young and older adults. J Neurosci 31:16344–16352. doi: 10.1523/JNEUROSCI.4159-11.2011 CrossRefPubMedGoogle Scholar
  16. Grèzes J, Decety J (2002) Does visual perception of object afford action? Evidence from a neuroimaging study. Neuropsychologia 40:212–220. doi: 10.1016/S0028-3932(01)00089-6 CrossRefPubMedGoogle Scholar
  17. Hamada M, Hanajma R, Terao Y, Okabe S, Nakatani-Enomoto S, Furubayashi T, Matsumoto H, Shirota O, Ugawa Y (2009) Primary motor cortical metaplasticity induced by priming over the supplementary motor area. J Physiol 587:4845–4862. doi: 10.1113/jphysiol.2009.179101 CrossRefPubMedPubMedCentralGoogle Scholar
  18. Hayduk-Costa G, Drummond NM, Carlsen AM (2013) Anodal tDCS over SMA decreases the probability of withholding an anticipated action. Behav Brain Res 257:208–214. doi: 10.1016/j.bbr.2013.09.030 CrossRefPubMedGoogle Scholar
  19. Hunter T, Sacco P, Nitsche MA, Turner DL (2009) Modulation of internal model formation during force field-induced motor learning by anodal transcranial direct current stimulation of primary motor cortex. J Physiol 587:2949–2961. doi: 10.1113/jphysiol.2009.169284 CrossRefPubMedPubMedCentralGoogle Scholar
  20. Jeffery DT, Norton JA, Roy FD, Gorassini MA (2007) Effects of transcranial direct current stimulation on the excitability of the leg motor cortex. Exp Brain Res 182:281–287CrossRefPubMedGoogle Scholar
  21. Kaski D, Dominguez RO, Allum JH, Bronstein AM (2013) Improving gait and balance in patients with leukoaraiosis using transcranial direct current stimulation and physical training: an exploratory study. Neurorehabil Neural Repair 27(9):864–871. doi: 10.1177/1545968313496328 CrossRefPubMedGoogle Scholar
  22. Liebetanz D, Koch R, Mayenfels S, Konig F, Paulus W, Nitsche MA (2009) Safety limits of cathodal transcranial direct current stimulation in rats. Clin Neurophysiol 120:1161–1167. doi: 10.1016/j.clinph.2009.01.022 CrossRefPubMedGoogle Scholar
  23. Madhavan S, Shah B (2012) Enhancing motor skill learning with transcranial direct current stimulation—a concise review with applications to stroke. Front Psychiatry 3:1–9. doi: 10.3389/fpsyt.2012.00066 CrossRefGoogle Scholar
  24. Madhavan S, Weber KA, Stinear JW (2011) Non-invasive brain stimulation enhances motor control of the hemiparetic ankle: implications for rehabilitation. Exp Brain Res 209:9–17. doi: 10.1007/s00221-010-2511-0 CrossRefPubMedGoogle Scholar
  25. Malouin F, Richard CL, Jackson PL, Dumas F, Doyon J (2003) Brain activations during motor imagery of locomotor-related tasks: a PET study. Hum Brain Mapp 19:47–62CrossRefPubMedGoogle Scholar
  26. Miniussi C, Cappa SF, Cohen LG, Floel A, Fregni F, Nitsche MA, Oliveri M, Pascual-Leone A, Paulus W, Priori A, Walsh V (2008) Efficacy of repetitive transcranial magnetic stimulation/transcranial direct current stimulation in cognitive neurorehabilitation. Brain Stimul 1:326–336. doi: 10.1016/j.brs.2008.07.002 CrossRefPubMedGoogle Scholar
  27. Miranda PC, Lomarev M, Hallet M (2006) Modeling the current distribution during transcranial direct current stimulation. Clin Neurophysiol 117:1623–1629. doi: 10.1016/j.clinph.2006.04.009 CrossRefPubMedGoogle Scholar
  28. Morton SM, Bastian AJ (2004) Cerebellar control of balance and locomotion. Neuroscientist 10:247–259. doi: 10.1177/1073858404263517 CrossRefPubMedGoogle Scholar
  29. Nachev P, Rees G, Partion A, Kennard C, Husain M (2005) Volition and conflict in human medial frontal cortex. Curr Biol 15:122–128. doi: 10.1016/j.cub.2005.01.006 CrossRefPubMedPubMedCentralGoogle Scholar
  30. Nachev P, Kennard C, Husain M (2008) Functional role of the supplementary and pre-supplementary motor area. Nat Rev Neurosci 9:856–869. doi: 10.1038/nrn2478 CrossRefPubMedGoogle Scholar
  31. Nguyen VT, Breakspear M, Cunnington R (2014) Reciprocal interactions of the SMA and cingulate cortex sustain premovement activity for voluntary actions. J Neurosci 34:16397–16407. doi: 10.1523/JNEUROSCI.2571-14.2014 CrossRefPubMedGoogle Scholar
  32. Niemi P, Näätänen R (1981) Foreperiod and simple reaction time. Psychol Bull 89:133–162CrossRefGoogle Scholar
  33. Nitsche MA, Paulus W (2000) Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. J Physiol 527:633–639. doi: 10.1111/j.1469-7793.2000.t01-1-00633.x CrossRefPubMedPubMedCentralGoogle Scholar
  34. Nitsche MA, Fricke K, Henschke U, Schlitterlau A, Liebetanz D, Lang N, Henning S, Tergau F, Paulus W (2003a) Pharmacological modulation of cortical excitability shifts induced by transcranial direct current stimulation in humans. J Physiol 553:293–301. doi: 10.1113/jphysiol.2003.049916 CrossRefPubMedPubMedCentralGoogle Scholar
  35. Nitsche MA, Schauenburg A, Lang N, Liebetanz D, Exner C, Paulus W et al (2003b) Facilitation of implicit motor learning by weak transcranial direct current stimulation of the primary motor cortex in the human. J Cogn Neurosci 15:619–626. doi: 10.1162/089892903321662994 CrossRefPubMedGoogle Scholar
  36. Oostenveld R, Praamstra P (2001) The five percent electrode system for high-resolution EEG and ERP measurements. Clin Neurophysiol 112:713–719. doi: 10.1016/S1388-2457(00)00527-7 CrossRefPubMedGoogle Scholar
  37. Pascual-Leone A, Brasil-Neto J, Valls-Sole J, Cohen LG, Hallett M (1992) Simple reaction time to focal transcranial magnetic stimulation. Comparison with reaction time to acoustic, visual and somatosensory stimuli. Brain 115:109–122. doi: 10.1093/brain/115.1.109 CrossRefPubMedGoogle Scholar
  38. Polanía R, Paulus W, Nitsche MA (2012) Modulating cortico-striatal and thalamo-cortical functional connectivity with transcranial direct current stimulation. Hum Brain Mapp 33:2499–2508. doi: 10.1002/hbm.21380 CrossRefPubMedGoogle Scholar
  39. Poreisz C, Boros K, Antal A, Paulus W (2007) Safety aspects of transcranial direct current stimulation concerning healthy subjects and patients. Brain Res Bull 72:208–214. doi: 10.1016/j.brainresbull.2007.01.004 CrossRefPubMedGoogle Scholar
  40. Priori A (2003) Brain polarization in humans: a reappraisal of an old tool for prolonged non-invasive modulation of brain excitability. Clin Neurophysiol 114:589–595. doi: 10.1016/S1388-2457(02)00437-6 CrossRefPubMedGoogle Scholar
  41. Reis J, Schambra HM, Cohen LG, Buch ER, Fritsch B, Zarahn E et al (2009) Noninvasive cortical stimulation enhances motor skill acquisition over multiple days through an effect on consolidation. Proc Natl Acad Sci 106:1590–1595. doi: 10.1073/pnas.0805413106 CrossRefPubMedPubMedCentralGoogle Scholar
  42. Rinehart NJ, Bradshaw JL, Brereton AV, Tonge BJ (2001) Movement preparation in high-functioning Asperger disorder: a serial choice reaction time task involving motor reprogramming. J Autism Dev Disord 31:79–88CrossRefPubMedGoogle Scholar
  43. Schneider HD, Hopp JP (2011) The use of the Bilingual Aphasia Test for assessment and transcranial direct current stimulation to modulate language acquisition in minimally verbal children with autism. Clin Linguist Phon 25:640–654. doi: 10.3109/02699206.2011.570852 CrossRefPubMedGoogle Scholar
  44. Schneider HD, Livitz IE, Schneider D (2013) Sustainable learning for sustainability. JOTSC 10:124–147. doi: 10.1179/1477963313Z.0000000009 CrossRefGoogle Scholar
  45. Stephan KM, Fink GR, Passingham RE, Silbersweig D, Ceballos-Baumann AO, Frith CD, Frackowiak RS (1995) Functional anatomy of the mental representation of upper extremity movements in healthy subjects. J Neurophysiol 73:373–386PubMedGoogle Scholar
  46. Stock A, Wascher E, Beste C (2013) Differential effects of motor efference copies and proprioceptive information on response evaluation processes. PLoS ONE 8:e62335. doi: 10.1371/journal.pone.0062335 CrossRefPubMedPubMedCentralGoogle Scholar
  47. Tanaka S, Hanakawa T, Honda M, Wanatabe K (2009) Enhancement of pinch force in the lower leg by anodal transcranial direct current stimulation. Exp Brain Res 196:459–465. doi: 10.1007/s00221-009-1863-9 CrossRefPubMedPubMedCentralGoogle Scholar
  48. Taube W, Mouthon M, Leukel C, Hoogewoud HM, Annoni JM, Keller M (2015) Brain activity during observation and motor imagery of different balance tasks: an fMRI study. Cortex 64:102–114. doi: 10.1016/j.cortex.2014.09.022 CrossRefPubMedGoogle Scholar
  49. Taubert M, Draganski B, Anwander A, Muller K, Horstmann A, Villringer A, Ragert P (2010) Dynamic properties of human brain structure: learning-related changes in cortical areas and associated fiber connections. J Neurosci 30:11670–11677. doi: 10.1523/JNEUROSCI.2567-10.2010 CrossRefPubMedGoogle Scholar
  50. Ullman MT (2006) Is Broca’s area part of a basal ganglia thalamocortical circuit? Cortex 42:480–485. doi: 10.1016/S0010-9452(08)70382-4 CrossRefPubMedGoogle Scholar
  51. Visser JE, Bloem BR (2005) Role of the basal ganglia in balance control. Neural Plast 12:161–174. doi: 10.1155/NP.2005.161 CrossRefPubMedPubMedCentralGoogle Scholar
  52. Vollman H, Conde V, Sewerin S, Taubert M, Sehm B, Witte OW, Villringer A, Ragert P (2013) Anodal transcranial direct current stimulation (tDCS) over supplementary motor area (SMA) but not pre-SMA promotes short-term visuomotor learning. Brain Stimul 6:101–107. doi: 10.1016/j.brs.2012.03.018 CrossRefGoogle Scholar
  53. Wagner T, Valero-Cabre A, Pascual-Leone A (2007) Noninvasive human brain stimulation. Annu Rev Biomed Eng 9:527–565. doi: 10.1146/annurev.bioeng.9.061206.133100 CrossRefPubMedGoogle Scholar
  54. Walenski M, Tager-Flusberg H, Ullman MT (2006) Language in autism. In: Moldin SO, Rubenstein JLR (eds) Understanding Autism: From basic neuroscience to treatment. CRC Press, Boca Raton, pp 175–203Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • K. E. Hupfeld
    • 1
  • C. J. Ketcham
    • 1
    Email author
  • H. D. Schneider
    • 2
  1. 1.Department of Exercise ScienceElon UniversityElonUSA
  2. 2.Brain Function LaboratoryYale School of MedicineNew HavenUSA

Personalised recommendations