Advertisement

Experimental Brain Research

, Volume 235, Issue 1, pp 279–292 | Cite as

The neuronal metabolite NAA regulates histone H3 methylation in oligodendrocytes and myelin lipid composition

  • N. K. Singhal
  • H. Huang
  • S. Li
  • R. Clements
  • J. Gadd
  • A. Daniels
  • E. E. Kooijman
  • P. Bannerman
  • T. Burns
  • F. Guo
  • D. Pleasure
  • E. Freeman
  • L. Shriver
  • J. McDonoughEmail author
Research Article

Abstract

The neuronal mitochondrial metabolite N-acetylaspartate (NAA) is decreased in the multiple sclerosis (MS) brain. NAA is synthesized in neurons by the enzyme N-acetyltransferase-8-like (NAT8L) and broken down in oligodendrocytes by aspartoacylase (ASPA) into acetate and aspartate. We have hypothesized that NAA links the metabolism of axons with oligodendrocytes to support myelination. To test this hypothesis, we performed lipidomic analyses using liquid chromatography–tandem mass spectrometry (LC–MS/MS) and high-performance thin-layer chromatography (HPTLC) to identify changes in myelin lipid composition in postmortem MS brains and in NAT8L knockout (NAT8L−/−) mice which do not synthesize NAA. We found reduced levels of sphingomyelin in MS normal appearing white matter that mirrored decreased levels of NAA. We also discovered decreases in the amounts of sphingomyelin and sulfatide lipids in the brains of NAT8L−/− mice compared to controls. Metabolomic analysis of primary cultures of oligodendrocytes treated with NAA revealed increased levels of α-ketoglutarate, which has been reported to regulate histone demethylase activity. Consistent with this, NAA treatment resulted in alterations in the levels of histone H3 methylation, including H3K4me3, H3K9me2, and H3K9me3. The H3K4me3 histone mark regulates cellular energetics, metabolism, and growth, while H3K9me3 has been linked to alterations in transcriptional repression in developing oligodendrocytes. We also noted the NAA treatment was associated with increases in the expression of genes involved in sulfatide and sphingomyelin synthesis in cultured oligodendrocytes. This is the first report demonstrating that neuronal-derived NAA can signal to the oligodendrocyte nucleus. These data suggest that neuronal-derived NAA signals through epigenetic mechanisms in oligodendrocytes to support or maintain myelination.

Keywords

Multiple sclerosis Oligodendrocytes Myelin lipids Mass spectrometry N-acetylaspartate Histone methylation 

Notes

Acknowledgments

We would like to thank the Rocky Mountain MS Center who is funded by the National Multiple Sclerosis Society and the Human Brain and Spinal Fluid Resource Center at UCLA for MS and control tissue. This research was funded in part by a grant from the College of Arts and Sciences at Kent State University (JM).

Supplementary material

221_2016_4789_MOESM1_ESM.docx (1.9 mb)
Supplementary material 1 (DOCX 1948 kb)

References

  1. Alling C, Vanier MT, Svennerholm L (1971) Lipid alterations in apparently normal white matter in multiple sclerosis. Brain Res 35:325–336CrossRefPubMedGoogle Scholar
  2. Bjartmar C, Kidd G, Mörk S, Rudick R, Trapp BD (2000) Neurological disability correlates with spinal cord axonal loss and reduced N-acetyl-aspartate in chronic multiple sclerosis patients. Ann Neurol 48:893–901CrossRefPubMedGoogle Scholar
  3. Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37(8):911–917CrossRefPubMedGoogle Scholar
  4. Bo L, Geurts JJ, Mork SJ, van der Valk P (2006) Grey matter pathology in multiple sclerosis. Acta Neurol Scand Suppl 183:48–50CrossRefPubMedGoogle Scholar
  5. Broadwater L, Pandit A, Azzam S, Clements R, Vadnal J, Yong VW, Freeman EJ, GregoryRB McDonoughJ (2011) Analysis of the mitochondrial proteome in multiple sclerosis cortex. Biochim Biophys Acta 1812:630–641CrossRefPubMedPubMedCentralGoogle Scholar
  6. Cader S, Johansen-Berg H, Wylezinska M, Palace J, Behrens TE, Smith S, Matthews PM (2007) Discordant white matter N-acetylasparate and diffusion MRI measures suggest that chronic metabolic dysfunction contributes to axonal pathology in multiple sclerosis. Neuroimage 36(1):19–27CrossRefPubMedGoogle Scholar
  7. Campbell GR, Ziabreva I, Reeve AK, Krishnan KJ, Reynolds R, Howell O, Lassmann H, Turnbull DM, Mahad DJ (2011) Mitochondrial DNA deletions and neurodegeneration in multiple sclerosis. Ann Neurol 69(3):481–492CrossRefPubMedGoogle Scholar
  8. Chakraborty G, Mekala P, Yahya D, Wu G, Ledeen RW (2001) Intraneuronal N-acetylaspartate supplies acetyl groups for myelin lipid synthesis: evidence for myelin-associated aspartoacylase. J Neurochem 78(4):736–745CrossRefPubMedGoogle Scholar
  9. Coetzee T, Fujita N, Dupree J, Shi R, Blight A, Suzuki K, Suzuki K, Popko B (1996) Myelination in the absence of galactocerebroside and sulfatide: normal structure with abnormal function and regional instability. Cell 86(2):209–219CrossRefPubMedGoogle Scholar
  10. De Stefano N, Narayanan S, Francis GS, Arnaoutelis R, Tartaglia MC, Antel JP, Matthews PM, Arnold DL (2001) Evidence of axonal damage in the early stages of multiple sclerosis and its relevance to disability. Arch Neurol 58(1):65–70CrossRefPubMedGoogle Scholar
  11. Dutta R, McDonough J, Yin X, Peterson J, Chang A, Torres T, Gudz T, Macklin WB, Lewis DA, Fox RJ, Rudick R, Mirnics K, Trapp BD (2006) Mitochondrial dysfunction as a cause of axonal degeneration in multiple sclerosis patients. Ann Neurol 59:478–489CrossRefPubMedGoogle Scholar
  12. Fewster ME, Burns BJ, Mead JF (1969) Quantitative densitometric thin-layer chromatography of lipids using copper acetate reagent. J Chromatogr 43(1):120–126CrossRefPubMedGoogle Scholar
  13. Fisher E, Lee JC, Nakamura K, Rudick RA (2008) Gray matter atrophy in multiple sclerosis: a longitudinal study. Ann Neurol 64(3):255–265CrossRefPubMedGoogle Scholar
  14. Ge Y, Gonen O, Inglese M, Babb JS, Markowitz CE, Grossman RI (2004) Neuronal cell injury precedes brain atrophy in multiple sclerosis. Neurology 62(4):624–627CrossRefPubMedGoogle Scholar
  15. Gonen O, Catalaa I, Babb JS, Ge Y, Mannon LJ, Kolson DL, Grossman RI (2000) Total brain N-acetylaspartate: a new measure of disease load in MS. Neurology 54(1):15–19CrossRefPubMedGoogle Scholar
  16. Guo F, Bannerman P, Mills Ko E, Miers L, Xu J, Burns T, Li S, Freeman E, McDonough J, Pleasure D (2015) Ablation of N-acetyl-l-aspartate synthesis prevents leukodystrophy in a murine model of Canavan disease. Ann Neurol 77(5):884–888CrossRefPubMedGoogle Scholar
  17. Gut P, Verdin E (2013) The nexus of chromatin regulation and intermediary metabolism. Nature 502(7472):489–498CrossRefPubMedGoogle Scholar
  18. Hammond E, Lang J, Maeda Y, Pleasure D, Angus-Hill M, Xu J, Horiuchi M, Deng W, Guo F (2015) The Wnt effector transcription factor 7-like 2 positively regulates oligodendrocyte differentiation in a manner independent of Wnt/β-catenin signaling. J Neurosci 35(12):5007–5022CrossRefPubMedGoogle Scholar
  19. Inglese M, Ge Y, Filippi M, Falini A, Grossman RI, Gonen O (2004) Indirect evidence for early widespread gray matter involvement in relapsing-remitting multiple sclerosis. Neuroimage 21:1825–1829CrossRefPubMedGoogle Scholar
  20. Kaul R, Gao GP, Balamurugan K, Matalon R (1993) Cloning of the human aspartoacylase cDNA and a common missense mutation in Canavan disease. Nat Genet 5(2):118–123CrossRefPubMedGoogle Scholar
  21. Khan O, Shen Y, Caon C, Bao F, Ching W, Reznar M, Buccheister A, Hu J, Latif Z, Tselis A, Lisak R (2005) Axonal metabolic recovery and potential neuroprotective effect of glatiramer acetate in relapsing-remitting multiple sclerosis. Mult Scler 11(6):646–651CrossRefPubMedGoogle Scholar
  22. Kumar S, Biancotti JC, Matalon R, de Vellis J (2009) Lack of aspartoacylase activity disrupts survival and differentiation of neural progenitors and oligodendrocytes in a mouse model of Canavan disease. J Neurosci Res 87:3415–3427CrossRefPubMedGoogle Scholar
  23. Laule C, Pavlova V, Leung E, Zhao G, MacKay AL, Kozlowski P, Traboulsee AL, Li DK, Moore GR (2013) Diffusely abnormal white matter in multiple sclerosis: further histologic studies provide evidence for a primary lipid abnormality with neurodegeneration. J Neuropathol Exp Neurol 72(1):42–52CrossRefPubMedGoogle Scholar
  24. Ledeen RW, Wang J, Wu G, Lu ZH, Chakraborty G, Meyenhofer M, Tyring SK, Matalon R (2006) Physiological role of N-acetylaspartate: contribution to myelinogenesis. Adv Exp Med Biol 576:131–143 discussion 361–363 CrossRefPubMedGoogle Scholar
  25. Li S, Clements R, Sulak M, Gregory R, Freeman E, McDonough J (2013) Decreased NAA in gray matter is correlated with decreased availability of acetate in white matter in postmortem multiple sclerosis cortex. Neurochem Res 38(11):2385–2396CrossRefPubMedGoogle Scholar
  26. Liu J, Magri L, Zhang F, Marsh NO, Albrecht S, Huynh JL, Kaur J, Kuhlmann T, Zhang W, Slesinger PA, Casaccia P (2015) Chromatin landscape defined by repressive histone methylation during oligodendrocyte differentiation. J Neurosci 35(1):352–365CrossRefPubMedPubMedCentralGoogle Scholar
  27. Madhavarao CN, Arun P, Moffett JR, Szucs S, Surendran S, Matalon R, Garbern J, Hristova D, Johnson A, Jiang W, Namboodiri MA (2005) Defective N-acetylaspartate catabolism reduces brain acetate levels and myelin lipid synthesis in Canavan’s disease. Proc Natl Acad Sci USA 102(14):5221–5226CrossRefPubMedPubMedCentralGoogle Scholar
  28. Marbois BN, Faull KF, Fluharty AL, Raval-Fernandes S, Rome LH (2000) Analysis of sulfatide from rat cerebellum and multiple sclerosis white matter by negative ion electrospray mass spectrometry. Biochim Biophys Acta 1484(1):59–70CrossRefPubMedGoogle Scholar
  29. Matalon R, Michals K, Sebesta D, Deanching M, Gashkoff P, Casanova J (1988) Aspartoacylase deficiency and N-acetylaspartic aciduria in patients with Canavan disease. Am J Med Genet 29:463–471CrossRefPubMedGoogle Scholar
  30. Matalon R, Rady PL, Platt KA, Skinner HB, Quast MJ, Campbell GA, Matalon K, Ceci JD, Tyring SK, Nehls M, Surendran S, Wei J, Ezell EL, Szucs S (2000) Knock-out mouse for Canavan disease: a model for gene transfer to the central nervous system. J Genet Med 2(3):165–175Google Scholar
  31. Mathiesen HK, Jonsson A, Tscherning T, Hanson LG, Andresen J, Blinkenberg M, Paulson OB, Sorensen PS (2006) Correlation of global N-acetyl aspartate with cognitive impairment in multiple sclerosis. Arch Neurol 63(4):533–536CrossRefPubMedGoogle Scholar
  32. Mattan NS, Ghiani CA, Lloyd M, Matalon R, Bok D, Casaccia P, de Vellis J (2010) Aspartoacylase deficiency affects early postnatal development of oligodendrocytes and myelination. Neurobiol Dis 40(2):432–443CrossRefPubMedPubMedCentralGoogle Scholar
  33. Mehta V, Namboodiri MA (1995) N-Acetylaspartate as an acetyl source in the nervous system. Brain Res Mol Brain Res 31(1–2):151–157CrossRefPubMedGoogle Scholar
  34. Moffett JR, Arun P, Ariyannur PS, Garbern JY, Jacobowitz DM, Namboodiri AM (2011) Extensive aspartoacylase expression in the rat central nervous system. Glia 59(10):1414–1434CrossRefPubMedPubMedCentralGoogle Scholar
  35. Norton WT, Poduslo SE (1973) Myelination in rat brain: method of myelin isolation. J Neurochem 21(4):749–757CrossRefPubMedGoogle Scholar
  36. Noseworthy JH, Lucchinetti C, Rodriguez M, Weinshenker BG (2000) Multiple sclerosis. N Engl J Med 343(13):938–952CrossRefPubMedGoogle Scholar
  37. Pandit A, Vadnal J, Houston S, Freeman E, McDonough J (2009) Impaired regulation of electron transport chain subunit genes by nuclear respiratory factor 2 in multiple sclerosis. J Neurol Sci 279:14–20CrossRefPubMedGoogle Scholar
  38. Quarles RH, Macklin WB, Morell P (2006) Myelin formation, structure and biochemistry. In: Siegel GJ, Agranoff BW, Albers RW et al (eds) Basic neurochemistry: molecular, cellular and medical aspects, 6th edn. Lippincott-Raven, Philadelphia, pp 51–71Google Scholar
  39. Salminen A, Kauppinen A, Hiltunen M, Kaarniranta K (2014) Krebs cycle intermediates regulate DNA and histone methylation: epigenetic impact on the aging process. Ageing Res Rev 16:45–65CrossRefPubMedGoogle Scholar
  40. Shen S, Li J, Casaccia-Bonnefil P (2005) Histone modifications affect timing of oligodendrocyte progenitor differentiation in the developing rat brain. J Cell Biol 169(4):577–589CrossRefPubMedPubMedCentralGoogle Scholar
  41. Shen S, Liu A, Li J, Wolubah C, Casaccia-Bonnefil P (2008) Epigenetic memory loss in aging oligodendrocytes in the corpus callosum. Neurobiol Aging 3:452–463CrossRefGoogle Scholar
  42. Shyh-Chang N, Locasale JW, Lyssiotis CA, Zheng Y, Teo RY, Ratanasirintrawoot S, Zhang J, Onder T, Unternaehrer JJ, Zhu H, Asara JM, Daley GQ, Cantley LC (2013) Influence of threonine metabolism on S-adenosylmethionine and histone methylation. Science 339:222–226CrossRefPubMedGoogle Scholar
  43. Signoretti S, Marmarou A, Tavazzi B, Lazzarino G, Beaumont A, Vagnozzi R (2001) N-Acetylaspartate reduction as a measure of injury severity and mitochondrial dysfunction following diffuse traumatic brain injury. J Neurotrauma 18(10):977–991CrossRefPubMedGoogle Scholar
  44. Traka M, Wollmann RL, Cerda SR, Dugas J, Barres BA, Popko B (2008) Nur7 is a nonsense mutation in the mouse aspartoacylase gene that causes spongy degeneration of the CNS. J Neurosci 28(45):11537–11549CrossRefPubMedPubMedCentralGoogle Scholar
  45. Vissers MC, Kuiper C, Dachs GU (2014) Regulation of the 2-oxoglutarate-dependent dioxygenases and implications for cancer. Biochem Soc Trans 42(4):945–951CrossRefPubMedGoogle Scholar
  46. Wegener A, Deboux C, Bachelin C, Frah M, Kerninon C, Seilhean D, Weider M, Wegner M, Nait-Oumesmar B (2015) Gain of Olig2 function in oligodendrocyte progenitors promotes remyelination. Brain 138(Pt 1):120–135CrossRefPubMedGoogle Scholar
  47. Wheeler D, Bandaru VV, Calabresi PA, Nath A, Haughey NJ (2008) A defect of sphingolipid metabolism modifies the properties of normal appearing white matter in multiple sclerosis. Brain 131(Pt 11):3092–3102CrossRefPubMedPubMedCentralGoogle Scholar
  48. Witte ME, Nijland PG, Drexhage JA, Gerritsen W, Geerts D, van Het Hof B, Reijerkerk A, de Vries HE, van der Valk P, van Horssen J (2013) Reduced expression of PGC-1α partly underlies mitochondrial changes and correlates with neuronal loss in multiple sclerosis cortex. Acta Neuropathol 125(2):231–243CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • N. K. Singhal
    • 1
  • H. Huang
    • 2
  • S. Li
    • 1
  • R. Clements
    • 1
  • J. Gadd
    • 1
  • A. Daniels
    • 1
  • E. E. Kooijman
    • 1
  • P. Bannerman
    • 4
  • T. Burns
    • 3
  • F. Guo
    • 3
  • D. Pleasure
    • 3
  • E. Freeman
    • 1
  • L. Shriver
    • 2
  • J. McDonough
    • 1
    Email author
  1. 1.Department of Biological Sciences and School of Biomedical SciencesKent State UniversityKentUSA
  2. 2.Department of Chemistry and BiologyUniversity of AkronAkronUSA
  3. 3.Department of NeurologyUC Davis School of MedicineSacramentoUSA
  4. 4.Department of Cell Biology and Human AnatomyUC Davis School of MedicineSacramentoUSA

Personalised recommendations