Experimental Brain Research

, Volume 235, Issue 2, pp 401–406 | Cite as

Sensitivity of the avian motion system to light and dark stimuli

  • Jean-François NankooEmail author
  • Christopher R. Madan
  • Marcia L. Spetch
  • Douglas R. Wylie
Research Article


Global motion perception is important for mobile organisms. In laterally eyed birds, global motion appears to be processed in the entopallium, a neural structure that is part of the tectofugal pathway. Electrophysiological research has shown that motion selective cells in the entopallium are most responsive to small dark moving targets. Here, we investigated whether this bias toward dark targets of entopallial cells is mirrored by perceptual performance in a motion detection task in pigeons. We measured the detection thresholds of pigeons using random dot stimuli that consisted of either black or white dots on a gray background. We found that thresholds were significantly lower when using black dots as opposed to white dots. This heightened sensitivity is also noted in the learning rates of the pigeons. That is, we found that the pigeons learned the detection task significantly faster when the stimuli consisted of black dots. We believe that our results have important implications for the understanding of the functional role of the entopallium and the ON and OFF pathways in the avian motion system.


ON pathway OFF pathway Motion perception Columba livia Luminance 



We would like to thank Isaac Lank, Jeffrey Pisklak and Jason Long for their help with technical issues and for running the pigeons in the experiments. This research was supported by Grants from the National Science and Engineering Research Council (NSERC) of Canada to M. L. S. and D. R. W.

Supplementary material

221_2016_4786_MOESM1_ESM.docx (26 kb)
Supplementary material 1 (DOCX 25 kb)


  1. Balasubramanian V, Sterling P (2009) Receptive fields and functional architecture in the retina. J Physiol 587:2753–2767CrossRefPubMedPubMedCentralGoogle Scholar
  2. Baron J, Pinto L, Dias MO, Lima B, Neuenschwander S (2007) Directional responses of visual wulst neurones to grating and plaid patterns in the awake owl. Eur J Neurosci 26:1950–1968CrossRefPubMedGoogle Scholar
  3. Bischof WE, Reid SL, Wylie DR, Spetch ML (1999) Perception of coherent motion in random dot displays by pigeons and humans. Percept Psychophys 61:1089–1101CrossRefPubMedGoogle Scholar
  4. Burr D, Thompson P (2011) Motion psychophysics: 1985–2010. Vision Res 51(1431):1456Google Scholar
  5. Cook RG, Katz JS (1999) Dynamic object perception by pigeons. J Exp Psychol Anim Behav Proc 25:194–210CrossRefGoogle Scholar
  6. Cook RG, Murphy MS (2012) Avian visual processing of motion and objects. In: Lazareva OF, Shimizu T, Wasserman EA (eds) How animals see the world: behavior, biology, and evolution of vision. Oxford University Press, London, pp 271–288Google Scholar
  7. Dittrich WH, Lea SE, Barrett J, Gurr PR (1998) Categorization of natural movements by pigeons: Visual concept discrimination and biological motion. J Exp Anal Behav 70:281–299CrossRefPubMedPubMedCentralGoogle Scholar
  8. Edwards M, Badcock DR (1994) Global motion perception: interaction of the ON and OFF pathways. Vis res 34:2849–2858CrossRefPubMedGoogle Scholar
  9. Engelage J, Bischof HJ (1993) The organization of the tectofugal pathway in birds: a comparative review. In: Zeigler HP, Bischof HJ (eds) Vision, brain, and behavior in birds. MIT Press, Cambridge, pp 137–158Google Scholar
  10. Fu YX, Xiao Q, Gao HF, Wang SR (1998) Stimulus features eliciting visual responses from neurons in the nucleus lentiformis mesencephali in pigeons. Vis Neurosci 15:1079–1087CrossRefPubMedGoogle Scholar
  11. Gu Y, Wang Y, Zhang T, Wang SR (2002) Stimulus size selectivity and receptive field organization of ectostriatal neurons in the pigeon. J Comp Physiol A 188:173–178CrossRefGoogle Scholar
  12. Hendricks J (1966) Flickerthresholds as determined by a modified conditioned suppression procedure. J Exp Anal Behav 9:501–506CrossRefPubMedPubMedCentralGoogle Scholar
  13. Jarvis JR, Taylor NR, Prescott NB, Meeks I, Wathes CM (2002) Measuring and modelling the photopic flicker sensitivity of the chicken (Gallus g. domesticus). Vision Res 42:99–106CrossRefPubMedGoogle Scholar
  14. Jin J, Wang Y, Lashgari R, Swadlow HA, Alonso JM (2011) Faster thalamocortical processing for dark than light visual targets. J Neurosci 31:17471–17479CrossRefPubMedPubMedCentralGoogle Scholar
  15. Karten HJ, Hodos W (1970) Telencephalic projections of the nucleus rotundus in the pigeon (Columba livia). J Comp Neurol 140:35–51CrossRefPubMedGoogle Scholar
  16. Karten HJ, Revzin AM (1966) The afferent connections of the nucleus rotundus in the pigeon. Brain Res 2:368–377CrossRefPubMedGoogle Scholar
  17. Köhler W (1940) Dynamics in psychology. Liveright Publishing Corp, New YorkGoogle Scholar
  18. Komban SJ, Alonso JM, Zaidi Q (2011) Darks are processed faster than lights. J Neurosci 31:8654–8658CrossRefPubMedPubMedCentralGoogle Scholar
  19. Lazareva OF, Shimizu T, Wasserman EA (2012) How animals see the world: behavior, biology, and evolution of vision. Oxford University Press, LondonCrossRefGoogle Scholar
  20. Lu ZL, Sperling G (2012) Black–white asymmetry in visual perception. J Vis 12:8CrossRefPubMedPubMedCentralGoogle Scholar
  21. Morrone MC, Burr DC, Vaina LM (1995) Two stages of visual processing for radial and circular motion. Nature 376:507CrossRefPubMedGoogle Scholar
  22. Morrone MC, Burr DC, Di Pietro S, Stefanelli MA (1999) Cardinal directions for visual optic flow. Curr Biol 9:763–766CrossRefPubMedGoogle Scholar
  23. Nakayama K (1985) Biological image motion processing: a review. Vision Res 25:625–660CrossRefPubMedGoogle Scholar
  24. Nankoo J-F, Madan CR, Spetch ML, Wylie DR (2014) Perception of complex motion in humans and pigeons (Columba livia). Exp Brain Res 232:1843–1853CrossRefPubMedGoogle Scholar
  25. Nelder JA, Mead R (1965) A simplex method for function minimization. Comput J 7:308–313CrossRefGoogle Scholar
  26. Nguyen AP, Spetch ML, Crowder NA, Winship IR, Hurd PL, Wylie DR (2004) A dissociation of motion and spatial-pattern vision in the avian telencephalon: implications for the evolution of “visual streams”. J Neurosci 24:4962–4970CrossRefPubMedGoogle Scholar
  27. Nishida SY (2011) Advancement of motion psychophysics: review 2001–2010. J Vis 11:11CrossRefPubMedGoogle Scholar
  28. Ratliff CP, Borghuis BG, Kao YH, Sterling P, Balasubramanian V (2010) Retina is structured to process an excess of darkness in natural scenes. Proc Natl Acad Sci USA 107:17368–17373CrossRefPubMedPubMedCentralGoogle Scholar
  29. Reymond L (1985) Spatial visual acuity of the eagle Aquila audax: a behavioural, optical and anatomical investigation. Vision Res 25:1477–1491CrossRefPubMedGoogle Scholar
  30. Rubene D, Håstad O, Tauson R, Wall H, Ödeen A (2010) The presence of UV wavelengths improves the temporal resolution of the avian visual system. J Exp Biol 213:3357–3363CrossRefPubMedGoogle Scholar
  31. Scase MO, Braddick OJ, Raymond JE (1996) What is noise for the motion system? Vision Res 36:2579–2586CrossRefPubMedGoogle Scholar
  32. Schiller PH (1995) The ON and OFF channels of the mammalian visual system. Prog Retin Eye Res 15:173–195CrossRefGoogle Scholar
  33. Shimizu T, Watanabe S (2012) The avian visual system: overview. In: Lazareva OF, Shimizu T, Wasserman EA (eds) How animals see the world: behavior, biology, and evolution of vision. Oxford University Press, London, pp 473–482CrossRefGoogle Scholar
  34. Spetch ML, Friedman A, Vuong QC (2006) Dynamic object recognition in pigeons and humans. Learn Behav 34:215–228CrossRefPubMedGoogle Scholar
  35. Wang Y, Gu Y, Wang SR (2000) Feature detection of visual neurons in the nucleus of the basal optic root in pigeons. ‎Brain Res Bull 15:165–169CrossRefGoogle Scholar
  36. Weibull W (1951) A statistical distribution function of wide applicability. J Appl Mech 13:293–297Google Scholar
  37. Xing D, Yeh CI, Shapley RM (2010) Generation of black-dominant responses in V1 cortex. J Neurosci 30:13504–13512CrossRefPubMedPubMedCentralGoogle Scholar
  38. Yang J, Li X, Wang SR (2002) Receptive field organization and response properties of visual neurons in the pigeon nucleus semilunaris. Neurosci Lett 331:179–182CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Department of PsychologyUniversity of AlbertaEdmontonCanada
  2. 2.Neuroscience and Mental Health InstituteUniversity of AlbertaEdmontonCanada
  3. 3.Department of PsychologyBoston CollegeChestnut HillUSA

Personalised recommendations