Experimental Brain Research

, Volume 234, Issue 11, pp 3305–3319 | Cite as

Simple arithmetic: electrophysiological evidence of coactivation and selection of arithmetic facts

Research Article
  • 154 Downloads

Abstract

This study aimed at exploring the time course of processes underlying the associative confusion effect. We also evaluated the consequences of selecting arithmetic facts to resolve addition problems. We gathered electrophysiological evidence when participants performed a verification task. Simple addition problems were presented in blocks of two trials and participants decided whether they were correct or not. The N400-like component was considered an index of semantic access (i.e., the retrieval of arithmetic facts), and the P200 component was used to determine the difficulty associated with encoding after the answer to an addition problem. When an addition problem was incorrect but the result presented to the participant was that of multiplying the operands (e.g., 2 + 4 = 8), N400-like amplitude was reduced relative to an unrelated condition (e.g., 2 + 4 = 10). This finding suggested that the coactivation of addition and multiplication facts took place. Furthermore, the P200 amplitude was more positive when participants answered to addition problems whose result was that of multiplying the operands of the previous trial (e.g., 2 + 6 = 8). This suggests that irrelevant results were inhibited and it was difficult to encode them later.

Keywords

Associative confusion effect Simple arithmetic N400 P200 Cognitive arithmetic 

Supplementary material

221_2016_4728_MOESM1_ESM.docx (16 kb)
Supplementary material 1 (DOCX 16 kb)

References

  1. Ashcraft MH (1992) Cognitive arithmetic: a review of data and theory. Cognition 44:75–106. doi:10.1016/0010-0277(92)90051-I CrossRefPubMedGoogle Scholar
  2. Avancini C, Soltész F, Szűcs D (2015) Separating stages of arithmetic verification: an ERP study with a novel paradigm. Neuropsychologia 75:322–329. doi:10.1016/j.neuropsychologia.2015.06.016 CrossRefPubMedGoogle Scholar
  3. Blackford T, Holcomb PJ, Grainger J, Kuperberg GR (2012) A funny thing happened on the way to articulation: N400 attenuation despite behavioral interference in picture naming. Cognition 123:84–99. doi:10.1016/j.cognition.2011.12.007 CrossRefPubMedPubMedCentralGoogle Scholar
  4. Campbell JID, Dowd R (2012) Inter-operation transfer in Chinese–English bilinguals’ arithmetic. Psychon Bull Rev 19:948–954. doi:10.3758/s13423-012-0277-z CrossRefPubMedGoogle Scholar
  5. Campbell JID, Graham DJ (1985) Mental multiplication skill: structure, process, and acquisition. Can J Psychol 39:338–366. doi:10.1037/h0080065 CrossRefGoogle Scholar
  6. Campbell JID, Thompson V (2012) Retrieval-induced forgetting of arithmetic facts. J Exp Psychol Learn Mem Cogn 38:118–129. doi:10.1037/a0025056 CrossRefPubMedGoogle Scholar
  7. Carreiras M, Duñabeitia JA, Molinaro N (2009) Consonants and vowels contribute differently to visual word recognition: ERPs of relative position priming. Cereb Cortex 19:2659–2670. doi:10.1093/cercor/bhp019 CrossRefPubMedGoogle Scholar
  8. Chapman RM, McCrary JW, Chapman JA (1978) Short-term memory: the storage component of human brain responses predicts recall. Science 202:1211–1214. doi:10.1126/science.725596 CrossRefPubMedGoogle Scholar
  9. Colomé A, Bafalluy MG, Noël MP (2011) Getting to the source: a questionnaire on the learning and use of arithmetical operations. Psicológica 32:223–253Google Scholar
  10. De Visscher A, Berens SC, Keidel JL, Noël MP, Bird CM (2015) The interference effect in arithmetic fact solving: an fMRI study. Neuroimage 116:92–101. doi:10.1016/j.neuroimage.2015.04.063 CrossRefPubMedGoogle Scholar
  11. Debruille JB (1998) Knowledge inhibition and N400: a study with words that look like common words. Brain Lang 62:202–220. doi:10.1006/brln.1997.1904 CrossRefPubMedGoogle Scholar
  12. Debruille JB, Ramirez D, Wolf Y, Schaefer A, Nguyen TV, Bacon BA et al (2008) Knowledge inhibition and N400: a within- and a between-subjects study with distractor words. Brain Res 1187:167–183. doi:10.1016/j.brainres.2007.10.021 CrossRefPubMedGoogle Scholar
  13. Dehaene S (1995) Electrophysiological evidence for category-specific word processing in the normal human brain. NeuroReport 6:2153–2157. doi:10.1097/00001756-199511000-00014 CrossRefPubMedGoogle Scholar
  14. Domahs F, Domahs U, Schlesewsky M, Ratinckx E, Verguts T, Willmes K, Nuerk H (2007) Neighborhood consistency in mental arithmetic: behavioral and ERP evidence. Behav Brain Funct 3:66. doi:10.1186/1744-9081-3-66 CrossRefPubMedPubMedCentralGoogle Scholar
  15. Donchin E, Coles MG (1988) Is the P300 component a manifestation of context updating? Behav Brain Sci 11:357–427. doi:10.1017/S0140525X00058027 CrossRefGoogle Scholar
  16. Dunn BR, Dunn DA, Languis M, Andrews D (1998) The relation of ERP components to complex memory processing. Brain Cogn 36:355–376. doi:10.1006/brcg.1998.0998 CrossRefPubMedGoogle Scholar
  17. Friedman D, Vaughan HG, Erlenmeyer-Kimling L (1981) Multiple late positive potentials in two visual discrimination tasks. Psychophysiol 18:635–649. doi:10.1111/j.1469-8986.1981.tb01838.x CrossRefGoogle Scholar
  18. Galfano G, Penolazzi B, Vervaeck I, Angrilli A, Umiltà C (2009) Event-related brain potentials uncover activation dynamics in the lexicon of multiplication facts. Cortex 45:1167–1177. doi:10.1016/j.cortex.2008.09.003 CrossRefPubMedGoogle Scholar
  19. Galfano G, Penolazzi B, Fardo F, Dhooge E, Angrilli A, Umiltà C (2011) Neurophysiological markers of retrieval-induced forgetting in multiplication fact retrieval. Psychophysiol 48:1681–1691. doi:10.1111/j.1469-8986.2011.01267.x CrossRefGoogle Scholar
  20. Grabner RH, Ansari D, Koschutnig K, Reishofer G, Ebner F (2013) The function of the left angular gyrus in mental arithmetic: evidence from the associative confusion effect. Hum Brain Mapp 24:1013–1024. doi:10.1002/hbm.21489 CrossRefGoogle Scholar
  21. Greenhouse S, Geisser S (1959) On methods in the analysis of profile data. Psychometrika 24:95–112. doi:10.1007/BF02289823 CrossRefGoogle Scholar
  22. Holcomb PJ, Grainger J, O’Rourke T (2002) An electrophysiological study of the effects of orthographic neighborhood size on printed word perception. J Cogn Neurosci 14:938–950. doi:10.1162/089892902760191153 CrossRefPubMedGoogle Scholar
  23. Hyde DC, Spelke ES (2009) All numbers are not equal: an electrophysiological investigation of large and small number representations. J Cogn Neurosci 21:1039–1053. doi:10.1162/jocn.2009.21090 CrossRefPubMedPubMedCentralGoogle Scholar
  24. Hyde DC, Wood JN (2011) Spatial attention determines the nature of nonverbal number representation. J Cogn Neurosci 23:2336–2351. doi:10.1162/jocn.2010.21581 CrossRefPubMedGoogle Scholar
  25. Iguchi Y, Hashimoto I (2000) Sequential information processing during a mental arithmetic is reflected in the time course of event-related brain potentials. Clin Neurophysiol 111:204–213. doi:10.1016/S1388-2457(99)00244-8 CrossRefPubMedGoogle Scholar
  26. Jasper HH (1958) Report to the committee on methods of clinical examination in electroencephalography. Appendix: the ten-twenty system of the International Federation. Electroencephalogr Clin Neurophysiol 10:370–375. doi:10.1016/0013-4694(58)90053-1 CrossRefGoogle Scholar
  27. Jiang X, Zhou X (2009) Processing different levels of syntactic hierarchy: an ERP study on Chinese. Neuropsychologia 47:1282–1293. doi:10.1016/j.neuropsychologia.2009.01.013 CrossRefPubMedGoogle Scholar
  28. Jost K, Hennighausen E, Rösler F (2004) Comparing arithmetic and semantic fact retrieval: effects of problem size and sentence constraint on event-related brain potentials. Psychophysiology 41:46–59. doi:10.1111/1469-8986.00119 CrossRefPubMedGoogle Scholar
  29. Kong J, Wang Y, Shang H, Yang Y, Zhuang D (1999) Brain potentials during mental arithmetic effect of problem difficulty on event-related brain potentials. Neurosci Lett 260:169–172. doi:10.1016/S0304-3940(98)00974-4 CrossRefPubMedGoogle Scholar
  30. Kutas M, Federmeier KD (2011) Thirty years and counting: finding meaning in the N400 component of the event-related brain potential (ERP). Annu Rev Psychol 62:621–647. doi:10.1146/annurev.psych.093008.131123 CrossRefPubMedPubMedCentralGoogle Scholar
  31. Kutas M, Hillyard SA (1980) Reading senseless sentences; brain potentials reflect semantic incongruity. Science 207:203–205. doi:10.1126/science.7350657 CrossRefPubMedGoogle Scholar
  32. Kutas M, Hillyard SA (1984) Brain potentials during reading reflect word expectancy and semantic association. Nature 307:161–163. doi:10.1038/307161a0 CrossRefPubMedGoogle Scholar
  33. Lemaire P, Fayol M, Abdi H (1991) Associative confusion effect in cognitive arithmetic: evidence for partially autonomous processes. Cahiers de Psychologie Cognitive 11:587–604Google Scholar
  34. Lemaire P, Barrett SE, Fayol M (1994) Automatic activation of addition and multiplication facts in elementary school children. J Exp Child Psychol 57:224–258. doi:10.1006/jecp.1994.1011 CrossRefGoogle Scholar
  35. Lemaire P, Abdi H, Fayol M (1996) The role of working memory resources in simple cognitive arithmetic. Eur J Cogn Psychol 8:73–103. doi:10.1080/095414496383211 CrossRefGoogle Scholar
  36. Macizo P, Van Petten C, O’Rourke PL (2012) Semantic access to embedded words? Electrophysiological and behavioral evidence from Spanish and English. Brain Lang 123:113–124. doi:10.1016/j.bandl.2012.07.010 CrossRefPubMedGoogle Scholar
  37. Maris E, Oostenveld R (2007) Nonparametric statistical testing of EEG- and MEG- data. J Neurosci Methods 164:177–190. doi:10.1016/j.jneumeth.2007.03.024 CrossRefPubMedGoogle Scholar
  38. McCandliss BD, Posner MI, Givon T (1997) Brain plasticity in learning visual words. Cogn Psychol 33:88–110. doi:10.1006/cogp.1997.0661 CrossRefGoogle Scholar
  39. Megías P, Macizo P (2015a) Simple arithmetic development in school age: the coactivation and selection of arithmetic facts. J Exp Child Psychol 138:88–105. doi:10.1016/j.jecp.2015.04.010 CrossRefPubMedGoogle Scholar
  40. Megías P, Macizo P (2015b) Activation and selection of arithmetic facts: the role of numerical format. Mem Cognit. doi:10.3758/s13421-015-0559-6 Google Scholar
  41. Megías P, Macizo P, Herrera A (2014) Simple arithmetic: evidence of an inhibitory mechanism to select arithmetic facts. Psychol Res. doi:10.1007/s00426-014-0603-3 PubMedGoogle Scholar
  42. Muluh ET, Vaughan CL, John LR (2011) High resolution event-related potentials analysis of the arithmetic-operation effect in mental arithmetic. Clin Neurophysiol 122:518–529. doi:10.1016/j.clinph.2010.08.008 CrossRefPubMedGoogle Scholar
  43. Niedeggen M, Rösler F (1996) N400 effects related to incongruities in mental calculation problems. Psychophysiology 33:S65Google Scholar
  44. Niedeggen M, Rösler F (1999) N400 effects reflect activation spread during retrieval of arithmetic facts. Psychol Sci 10:271–276. doi:10.1111/1467-9280.00149 CrossRefGoogle Scholar
  45. Niedeggen M, Rösler F, Jost K (1999) Processing of incongruous mental calculation problems: evidence for an arithmetic N400 effect. Psychophysiology 36:307–324. doi:10.1017/S0048577299980149 CrossRefPubMedGoogle Scholar
  46. Paulmann S, Pell MD (2009) Facial expression decoding as a function of emotional meaning status: ERP evidence. NeuroReport 20:1603–1608. doi:10.1097/WNR.0b013e3283320e3f CrossRefPubMedGoogle Scholar
  47. Paulmann S, Bleichner M, Kotz SA (2013) Valence, arousal, and task effects in emotional prosody processing. Front Psychol 4:345. doi:10.3389/fpsyg.2013.00345 CrossRefPubMedPubMedCentralGoogle Scholar
  48. Raney GE (1993) Monitoring changes in cognitive load during reading: an event-related brain potential and reaction time analysis. J Exp Psychol Learn Mem Cogn 19:51–69. doi:10.1037/0278-7393.19.1.51 CrossRefPubMedGoogle Scholar
  49. Rubinsten O, Dana S, Lavro D, Berger A (2013) Processing ordinality and quantity: ERP evidence of separate mechanisms. Brain Cogn 82:201–212. doi:10.1016/j.bandc.2013.04.008 CrossRefPubMedGoogle Scholar
  50. Schneider W, Eschman A, Zuccolotto A (2002) E-Prime user’s guide (Version 1.1). Psychology Software Tools, PittsburgGoogle Scholar
  51. Shang M, Debruille JB (2013) N400 processes inhibit inappropriately activated representations: adding a piece of evidence from a high-repetition design. Neuropsychologia 51:1989–1997. doi:10.1016/j.neuropsychologia.2013.06.006 CrossRefPubMedGoogle Scholar
  52. Smith ME (1993) Neurophysiological manifestations of recollective experience during recognition memory judgments. J Cogn Neurosci 5:1–13. doi:10.1162/jocn.1993.5.1.1 CrossRefPubMedGoogle Scholar
  53. Szücs D, Csépe V (2004) Access to numerical information is dependent on the modality of stimulus presentation in mental addition: a combined ERP and behavioral study. Cogn Brain Res 19:10–27. doi:10.1016/j.cogbrainres.2003.11.002 CrossRefGoogle Scholar
  54. Tabachnick B, Fidell L (2001) Using multivariate statistics. Allyn & Bacon, BostonGoogle Scholar
  55. Turconi E, Jemel B, Rossion B, Seron X (2004) Electrophysiological evidence for differential processing of numerical quantity and order in humans. Cogn Brain Res 21:22–38. doi:10.1016/j.cogbrainres.2004.05.003 CrossRefGoogle Scholar
  56. Winkelman JH, Schmidt J (1974) Associative confusions in mental arithmetic. J Exp Psychol 102:734–736. doi:10.1037/h0036103 CrossRefGoogle Scholar
  57. Zbrodoff NJ, Logan GD (1986) On the autonomy of mental processes: a case study of arithmetic. J Exp Psychol 115:118–131. doi:10.1037/0096-3445.115.2.118 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Departamento de Psicología Experimental, Facultad de PsicologíaUniversidad de GranadaGranadaSpain
  2. 2.Mind, Brain and Behavior Research Center (CIMCYC)GranadaSpain

Personalised recommendations