Experimental Brain Research

, Volume 234, Issue 11, pp 3291–3303 | Cite as

Synchrony of the Reach and the Grasp in pantomime reach-to-grasp

  • Jessica R. KuntzEmail author
  • Ian Q. Whishaw
Research Article


The Dual Visuomotor Channel theory of reaching proposes that a reach-to-grasp act integrates a Reach, directed toward the extrinsic properties of the target (location), and a Grasp, directed toward the intrinsic properties of the target (size and shape). Previous studies of reach-to-grasp report that the Grasp is altered in pantomime tasks made from a starting position with digit 1 and digit 2 closed and proximal to the target. The present study extends the analysis of real versus pantomime reaching to a task that featured both a Reach and a Grasp, having a starting position with the hand open and proximal to the body. For a real reach, seated participants reached for a doughnut ball (food item) located on a pedestal at arms distance, with the intent of bringing the doughnut ball to the mouth for eating. Participants also made four pantomime reaches with: (1) the doughnut ball removed from the pedestal, (2) the doughnut ball and pedestal moved to the side of the reach location, (3) the doughnut ball and pedestal absent, and (4) the participants wearing vision-occluding glasses. There were two main findings. First, the presence of task-related cues, platform, doughnut ball, and room influenced the kinematics of the Reach and Grasp. Second, the compound structure of a real reach, in which flexion/extension of the arm featured in the Reach and flexion/extension of the digits featured in the Grasp are out of phase, changed in pantomime such that these features of Reach and Grasp became in phase. The results show that pantomime reaching is influenced not only by task-related percepts but also by central mechanisms ordinarily related to integrating the Reach and the Grasp.


Brain and pantomime Pantomime reaching Reach-to-grasp Dorsal stream Reach components in pantomime Synchrony of the Reach and Grasp in pantomime Ventral stream Visually guided reaching 

Supplementary material

Supplementary material 1 (MOV 19013 kb)

Supplementary material 2 (MOV 13612 kb)

Supplementary material 3 (MOV 17402 kb)

Supplementary material 4 (MOV 14419 kb)

Supplementary material 5 (MOV 15402 kb)


  1. Ansuini C, Giosa L, Turella L, Altoè G, Castiello U (2008) An object for an action, the same object for other actions: effects on hand shaping. Exp Brain Res 185(1):111–119CrossRefPubMedGoogle Scholar
  2. Arbib MA (1981) Perceptual structures and distributed motor control. Handb Physiol 2:1449–1480. doi: 10.1016/j.jphysparis.2008.03.001 Google Scholar
  3. Binkofski F, Dohle C, Posse S, Stephan KM, Hefter H, Seitz RJ, Freund HJ (1998) Human anterior intraparietal area subserves prehension A combined lesion and functional MRI activation study. Neurology 50(5):1253–1259CrossRefPubMedGoogle Scholar
  4. Binkofski F, Buccino G, Posse S, Seitz RJ, Rizzolatti G, Freund H (1999) A fronto-parietal circuit for object manipulation in man: evidence from an fMRI-study. Eur J Neurosci 11(9):3276–3286CrossRefPubMedGoogle Scholar
  5. Bonivento C, Rothstein P, Humphreys G, Chechlacz M (2014) Neural correlates of transitive and intransitive action imitation: an investigation using voxel-based morphometry. Neuroimage Clin 6:488–497. doi: 10.1016/j.nicl.2014.09.010eCollection CrossRefPubMedPubMedCentralGoogle Scholar
  6. Cavina-Pratesi C, Monaco S, Fattori P, Galleti C, McAdam TD, Quinlan DJ et al (2010a) Functional magnetic resonance imaging reveals the neural substrates of arm transport and grip formation in reach-to-grasp actions in humans. J Neurosci 30(31):10306–10323CrossRefPubMedGoogle Scholar
  7. Cavina-Pratesi C, Ietswaart M, Humphreys GW, Lestou V, Milner AD (2010b) Impaired grasping in a patient with optic ataxia: primary visuomotor deficit or secondary consequence of misreaching? Neuropsychologia 48(1):226–234CrossRefPubMedGoogle Scholar
  8. Culham JC, Valyear KF (2006) Human parietal cortex in action. Curr Opin Neurobiol 16(2):205–212CrossRefPubMedGoogle Scholar
  9. De Sanctis T, Tarantino V, Straulino E, Begliomini C, Castiello U (2013) Co-registering kinematics and evoked related potentials during visually guided reach-to-grasp movements. PLoS One 8(6):e65508CrossRefPubMedPubMedCentralGoogle Scholar
  10. Eshkol N, Wachman A (1958) Movement notation. Weidenfeld and Nicolson, LondonGoogle Scholar
  11. Fattori P, Kutz DF, Breveglieri R, Marzocchi N, Galletti C (2005) Spatial tuning of reaching activity in the medial parieto-occipital cortex (area V6A) of macaque monkey. Eur J Neurosci 22(4):956–972CrossRefPubMedGoogle Scholar
  12. Filimon F (2010) Human cortical control of hand movements: parietofrontal networks for reaching, grasping, and pointing. Neuroscientist 16(4):388–407CrossRefPubMedGoogle Scholar
  13. Fukui T, Inui T (2013) How vision affects kinematic properties of pantomimed prehension movements. Front Psychol 4:44. doi: 10.3389/fpsyg.2013.00044 PubMedPubMedCentralGoogle Scholar
  14. Gharbawie OA, Stepniewska I, Kaas JH (2011) Cortical connections of functional zones in posterior parietal cortex and frontal cortex motor regions in new world monkeys. Cereb Cortex 21:1981–2002. doi: 10.1093/cercor/bhq260 CrossRefPubMedPubMedCentralGoogle Scholar
  15. Goodale MA, Jakobson LS, Keillor JM (1994) Differences in the visual control of pantomimed and natural grasping movements. Neuropsychologia 32(10):1159–1178CrossRefPubMedGoogle Scholar
  16. Hall LA, Karl JM, Thomas BL, Whishaw IQ (2014) Reach and Grasp reconfigurations reveal that proprioception assists reaching and hapsis assists grasping in peripheral vision. Exp Brain Res 232:2807–2819. doi: 10.1007/s00221-014-3945-6 CrossRefPubMedGoogle Scholar
  17. Holmes SA, Lohmus J, McKinnon S, Mulla A, Heath M (2013) Distinct visual cues mediate aperture shaping for grasping and pantomime-grasping tasks. J Mot Behav 45:431–439. doi: 10.1080/00222895.2013.818930 CrossRefPubMedGoogle Scholar
  18. Jazi SD et al (2015) Pantomime-grasping: the ‘return’of haptic feedback supports the absolute specification of object size. Exp Brain Res 233(7):2029–2040CrossRefGoogle Scholar
  19. Jeannerod M (1981) Intersegmental coordination during reaching at natural visual objects. Atten Perform IX 9:153–168Google Scholar
  20. Jeannerod M (1999) Visuomotor channels: their integration in goal-directed prehension. Hum Mov Sci 18(2):201–218CrossRefGoogle Scholar
  21. Jeannerod M, Decety J, Michel F (1994) Impairment of grasping movements following a bilateral posterior parietal lesion. Neuropsychologia 32(4):369–380CrossRefPubMedGoogle Scholar
  22. Kaas JH, Gharbawie OA, Stepniewska I (2011) The organization and evolution of dorsal stream multisensory motor pathways in primates. Front Neuroanat 5:1–7. doi: 10.3389/fnana.2011.00034.eCollection CrossRefGoogle Scholar
  23. Karl JM, Whishaw IQ (2014) Haptic grasping configurations in early infancy reveal different developmental profiles for visual guidance of the Reach versus the Grasp. Exp Brain Res 232(10):3301–3316. doi: 10.1007/s00221-014-4013-y CrossRefPubMedGoogle Scholar
  24. Karl JM, Sacrey LA, Doan JB, Whishaw IQ (2012) Hand shaping based on hapsis resembles visually guided hand shaping. Exp Brain Res 219:59–74. doi: 10.1007/s00221-012-3067-y CrossRefPubMedGoogle Scholar
  25. Karl JM, Schneider LR, Whishaw IQ (2013) Non-visual learning of intrinsic object properties in a reaching task dissociates grasp from reach. Exp Brain Res 225(4):465–477. doi: 10.1007/s00221-012-3386-z CrossRefPubMedGoogle Scholar
  26. Króliczak G, Cavina-Pratesi C, Goodman DA, Culham JC (2007) What does the brain do when you fake it? an fMRI study of pantomimed and real grasping. J Neurophysiol 97:2410–2422CrossRefPubMedGoogle Scholar
  27. Oldfield RC (1971) The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia 9(1):97–113CrossRefPubMedGoogle Scholar
  28. Pettypiece CE, Goodale MA, Culham JC (2010) Integration of haptic and visual size cues in perception and action revealed through cross-modal conflict. Exp Brain Res 201:863–873. doi: 10.1007/s00221-009-2101-1 CrossRefPubMedGoogle Scholar
  29. Rizzolatti G, Matelli M (2003) Two different streams form the dorsal visual system: anatomy and function. Exp Brain Res 153:146–157CrossRefPubMedGoogle Scholar
  30. Rizzolatti G, Luppino G, Matelli M (1998) The organization of the cortical motor system: new concepts. Electroencephalogr Clin Neurophysiol 106:283–296CrossRefPubMedGoogle Scholar
  31. Sacrey LAR, Whishaw IQ (2012) Subsystems of sensory attention for skilled reaching: vision for transport and pre-shaping and somatosensation for grasping, withdrawal and release. Behav Brain Res 231(2):356–365CrossRefPubMedGoogle Scholar
  32. Sacrey LA, Alaverdashvili M, Whishaw IQ (2009) Similar hand shaping in reaching-for-food (skilled reaching) in rats and humans provides evidence of homology in release, collection, and manipulation movements. Behav Brain Res 204:153–161. doi: 10.1016/j.bbr.2009.05.035 CrossRefPubMedGoogle Scholar
  33. Saling M, Mescheriakov S, Molokanova E, Stelmach GE, Berger M (1996) Grip reorganization during wrist transport: the influence of an altered aperture. Exp Brain Res 108(3):493–500CrossRefPubMedGoogle Scholar
  34. Sartori L, Staulino E, Castiello U (2011) How objects are grasped: the interplay between affordances and end-goals. PLoS One 6(9):e25203. doi: 10.1371/journal.pone.0025203 CrossRefPubMedPubMedCentralGoogle Scholar
  35. Shallice T, Venable N, Rumiati RI (2005) Dissociable distal and proximal motor components: evidence from perseverative errors in three apraxic patients. Cogn Neuropsychol 22(5):625–639. doi: 10.1080/02643290442000248 CrossRefPubMedGoogle Scholar
  36. Smeets JB, Brenner E (1999) A new view on grasping. Mot Control 3(3):237–271CrossRefGoogle Scholar
  37. Tagliabue M, Ciancio AL, Brochier T, Eskiizmirliler S, Maier MA (2015) Differences between kinematic synergies and muscle synergies during two-digit grasping. Front Hum Neurosci 9:165. doi: 10.3389/fnhum.2015.00165.eCollection CrossRefPubMedPubMedCentralGoogle Scholar
  38. Tanne-Gariepy J, Rouiller EM, Boussaoud D (2002) Parietal inputs to dorsal versus ventral premotor areas in the macaque monkey: evidence for largely segregated visuomotor pathways. Exp Brain Res 145:91–103. doi: 10.1007/s00221-002-1078-9 CrossRefPubMedGoogle Scholar
  39. Taylor LJ, Zwaan RA (2010) Grasping spheres, not planets. Cognition 115(1):39–45. doi: 10.1016/j.cognition.2009.11.006 CrossRefPubMedGoogle Scholar
  40. Thomas BL, Karl JM, Whishaw IQ (2014) Independent development of the Reach and the Grasp in spontaneous self-touching by human infants in the first 6 months. Front Psychol 5:1526. doi: 10.3389/fpsyg.2014.01526eCollection PubMedGoogle Scholar
  41. Valyear KF, Chapman CS, Gallivan JP, Mark RS, Culham JC (2011) To use or to move: goal-set modulates priming when grasping real tools. Exp Brain Res 212(1):125–142. doi: 10.1007/s00221-011-2705-0 CrossRefPubMedGoogle Scholar
  42. Vesia M, Bolton DA, Mochizuki G, Staines WR (2013) (2013) Human parietal and primary motor cortical interactions are selectively modulated during the transport and grip formation of goal-directed hand actions. Neuropsychologia 51:410–417. doi: 10.1016/j.neuropsychologia.2012.11.022 CrossRefPubMedGoogle Scholar
  43. Vry MS et al (2015) The ventral fiber pathway for pantomime of object use. Neuroimage 106:252–263CrossRefPubMedGoogle Scholar
  44. Westwood DA, Chapman CD, Roy EA (2000) Pantomimed actions may be controlled by the ventral visual stream. Exp Brain Res 130(4):545–548CrossRefPubMedGoogle Scholar
  45. Whishaw IQ, Karl JM (2014) The contribution of the Reach and the Grasp to shaping brain and behaviour. Can J Exp Psychol 68(4):223–235CrossRefPubMedGoogle Scholar
  46. Whishaw IQ, Suchowersky O, Davis L, Sarna J, Metz GA, Pellis SM (2002) Impairment of pronation, supination, and body co-ordination in reach-to-grasp tasks in human Parkinson’s disease (PD) reveals homology to deficits in animal models. Behav Brain Res 133(2):165–176CrossRefPubMedGoogle Scholar
  47. Whishaw IQ, Travis SG, Koppe SW, Sacrey LA, Gholamrezaei G, Gorny B (2010) Hand shaping in the rat: conserved release and collection vs. flexible manipulation in overground walking, ladder rung walking, cylinder exploration, and skilled reaching. Behav Brain Res 206:21–31CrossRefPubMedGoogle Scholar
  48. Whitwell RL, Milner AD, Goodale MA (2015) The two visual systems hypothesis: new challenges and insights from visual form agnosic patient DF. Arm Hand Mov Curr Knowl Futur Perspect 5(255):98Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Department of Neuroscience, Canadian Centre for Behavioral NeuroscienceUniversity of LethbridgeLethbridgeCanada

Personalised recommendations