Experimental Brain Research

, Volume 234, Issue 11, pp 3225–3232 | Cite as

Near-infrared light treatment reduces astrogliosis in MPTP-treated monkeys

  • Nabil El Massri
  • Cécile Moro
  • Napoleon Torres
  • Fannie Darlot
  • Diane Agay
  • Claude Chabrol
  • Daniel M. Johnstone
  • Jonathan Stone
  • Alim-Louis Benabid
  • John Mitrofanis
Research Article


We have reported previously that intracranial application of near-infrared light (NIr) reduces clinical signs and offers neuroprotection in a subacute MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) monkey model of Parkinson’s disease. In this study, we explored whether NIr reduces the gliosis in this animal model. Sections of midbrain (containing the substantia nigra pars compacta; SNc) and striatum were processed for glial fibrillary acidic protein (to label astrocytes; GFAP) and ionised calcium-binding adaptor molecule 1 (to label microglia; IBA1) immunohistochemistry. Cell counts were undertaken using stereology, and cell body sizes were measured using ImageJ. Our results showed that NIr treatment reduced dramatically (~75 %) MPTP-induced astrogliosis in both the SNc and striatum. Among microglia, however, NIr had a more limited impact in both nuclei; although there was a reduction in overall cell size, there were no changes in the number of microglia in the MPTP-treated monkeys after NIr treatment. In summary, we showed that NIr treatment influenced the glial response, particularly that of the astrocytes, in our monkey MPTP model of Parkinson’s disease. Our findings raise the possibility of glial cells as a future therapeutic target using NIr.


Substantia nigra Striatum Parkinson’s disease Photobiomodulation 670 nm 



Adenosine triphosphate


Glial fibrillary acidic protein


Globus pallidus


Ionised calcium-binding adaptor molecule 1




Near-infrared light


Red nucleus


Substantia nigra pars compacta


Substantia nigra pars reticulata



We are forever grateful to Michael J Fox Foundation, Credit Agricole Sud Rhones Alpes, Fondation Philanthropique Edmond J Safra, France Parkinson and the French National Research Agency (ANR Carnot Institute), Tenix corp and Salteri family and our industry partners for funding this work. Daniel Johnstone is an Early Career Fellow of the NHMRC, Australia. We thank Sharon Spana, Diane Agay, Guillaume Barboux, Clément Perrin, Cyril Zenga and Mylène D’Orchymont for excellent technical assistance.


  1. Ashkan K, Wallace BA, Mitrofanis J et al (2007) SPECT imaging, immunohistochemical and behavioural correlations in the primate models of Parkinson’s disease. Parkinsonism Relat Disord 13:266–275. doi: 10.1016/j.parkreldis.2006.10.009 CrossRefPubMedGoogle Scholar
  2. Barcia C, Barreiro AF, Poza M, Herrero M-T (2003) Parkinson’s disease and inflammatory changes. Neurotox Res 5:411–417. doi: 10.1007/BF03033170 CrossRefPubMedGoogle Scholar
  3. Begum R, Powner MB, Hudson N et al (2013) Treatment with 670 nm light up regulates cytochrome C oxidase expression and reduces inflammation in an age-related macular degeneration model. PLoS ONE 8:e57828. doi: 10.1371/journal.pone.0057828 CrossRefPubMedPubMedCentralGoogle Scholar
  4. Bergman H, Deuschl G (2002) Pathophysiology of Parkinson’s disease: from clinical neurology to basic neuroscience and back. Mov Disord 17(Suppl 3):S28–S40CrossRefPubMedGoogle Scholar
  5. Blandini F, Nappi G, Tassorelli C, Martignoni E (2000) Functional changes of the basal ganglia circuitry in Parkinson’s disease. Prog Neurobiol 62:63–88CrossRefPubMedGoogle Scholar
  6. Burda JE, Bernstein AM, Sofroniew MV (2016) Astrocyte roles in traumatic brain injury. Exp Neurol 275(Pt 3):305–315. doi: 10.1016/j.expneurol.2015.03.020 CrossRefPubMedGoogle Scholar
  7. Chung H, Dai T, Sharma SK et al (2012) The nuts and bolts of low-level laser (light) therapy. Ann Biomed Eng 40:516–533. doi: 10.1007/s10439-011-0454-7 CrossRefPubMedGoogle Scholar
  8. Członkowska A, Kohutnicka M, Kurkowska-Jastrzebska I, Członkowski A (1996) Microglial reaction in MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) induced Parkinson’s disease mice model. Neurodegeneration 5:137–143CrossRefPubMedGoogle Scholar
  9. Darlot F, Moro C, El Massri N et al (2016) Near-infrared light is neuroprotective in a monkey model of Parkinson disease. Ann Neurol 79:59–75. doi: 10.1002/ana.24542 CrossRefPubMedGoogle Scholar
  10. El Massri N, Johnstone DM, Peoples CL et al (2016) The effect of different doses of near infrared light on dopaminergic cell survival and gliosis in MPTP-treated mice. Int J Neurosci 126:76–87. doi: 10.3109/00207454.2014.994063 CrossRefPubMedGoogle Scholar
  11. Fernagut PO, Diguet E, Bioulac B, Tison F (2004) MPTP potentiates 3-nitropropionic acid-induced striatal damage in mice: reference to striatonigral degeneration. Exp Neurol 185:47–62CrossRefPubMedGoogle Scholar
  12. Francis JW, Von Visger J, Markelonis GJ, Oh TH (1995) Neuroglial responses to the dopaminergic neurotoxicant 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine in mouse striatum. Neurotoxicol Teratol 17:7–12. doi: 10.1016/0892-0362(94)00048-I CrossRefPubMedGoogle Scholar
  13. Gkotsi D, Begum R, Salt T et al (2014) Recharging mitochondrial batteries in old eyes. Near infra-red increases ATP. Exp Eye Res 122:50–53. doi: 10.1016/j.exer.2014.02.023 CrossRefPubMedGoogle Scholar
  14. Halliday GM, Stevens CH (2011) Glia: initiators and progressors of pathology in Parkinson’s disease. Mov Disord 26:6–17. doi: 10.1002/mds.23455 CrossRefPubMedGoogle Scholar
  15. Hamby ME, Sofroniew MV (2010) Reactive astrocytes as therapeutic targets for CNS disorders. Neurotherapeutics 7:494–506. doi: 10.1016/j.nurt.2010.07.003 CrossRefPubMedPubMedCentralGoogle Scholar
  16. Hurley SD, O’Banion MK, Song DD et al (2003) Microglial response is poorly correlated with neurodegeneration following chronic, low-dose MPTP administration in monkeys. Exp Neurol 184:659–668. doi: 10.1016/S0014-4886(03)00273-5 CrossRefPubMedGoogle Scholar
  17. Johnstone DM, El Massri N, Moro C et al (2014) Indirect application of near infrared light induces neuroprotection in a mouse model of parkinsonism—an abscopal neuroprotective effect. Neuroscience 274:93–101. doi: 10.1016/j.neuroscience.2014.05.023 CrossRefPubMedGoogle Scholar
  18. Khan I, Arany P (2015) Biophysical approaches for oral wound healing: emphasis on photobiomodulation. Adv Wound Care (New Rochelle) 4:724–737. doi: 10.1089/wound.2014.0623 CrossRefGoogle Scholar
  19. Khuman J, Zhang J, Park J et al (2012) Low-level laser light therapy improves cognitive deficits and inhibits microglial activation after controlled cortical impact in mice. J Neurotrauma 29:408–417. doi: 10.1089/neu.2010.1745 CrossRefPubMedPubMedCentralGoogle Scholar
  20. Kohutnicka M, Lewandowska E, Kurkowska-Jastrzȩbska I et al (1998) Microglial and astrocytic involvement in a murine model of Parkinson’s disease induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Immunopharmacology 39:167–180. doi: 10.1016/S0162-3109(98)00022-8 CrossRefPubMedGoogle Scholar
  21. McGeer PL, McGeer EG (1998) Glial cell reactions in neurodegenerative diseases: pathophysiology and therapeutic interventions. Alzheimer Dis Assoc Disord 12(Suppl 2):S1–S6PubMedGoogle Scholar
  22. McGeer PL, McGeer EG (2008) Glial reactions in Parkinson’s disease. Mov Disord 23:474–483. doi: 10.1002/mds.21751 CrossRefPubMedGoogle Scholar
  23. McGeer PL, Itagaki S, Boyes BE, McGeer EG (1988) Reactive microglia are positive for HLA-DR in the substantia nigra of Parkinson’s and Alzheimer’s disease brains. Neurology 38:1285–1291CrossRefPubMedGoogle Scholar
  24. McGeer PL, Schwab C, Parent A, Doudet D (2003) Presence of reactive microglia in monkey substantia nigra years after 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine administration. Ann Neurol 54:599–604. doi: 10.1002/ana.10728 CrossRefPubMedGoogle Scholar
  25. Mirza B, Hadberg H, Thomsen P, Moos T (1999) The absence of reactive astrocytosis is indicative of a unique inflammatory process in Parkinson’s disease. Neuroscience 95:425–432. doi: 10.1016/S0306-4522(99)00455-8 CrossRefGoogle Scholar
  26. Moro C, El Massri N, Torres N et al (2014) Photobiomodulation inside the brain: a novel method of applying near-infrared light intracranially and its impact on dopaminergic cell survival in MPTP-treated mice. J Neurosurg 120:670–683. doi: 10.3171/2013.9.JNS13423 CrossRefPubMedGoogle Scholar
  27. Muili KA, Gopalakrishnan S, Meyer SL et al (2012) Amelioration of experimental autoimmune encephalomyelitis in C57BL/6 mice by photobiomodulation induced by 670 nm light. PLoS ONE 7:e30655. doi: 10.1371/journal.pone.0030655 CrossRefPubMedPubMedCentralGoogle Scholar
  28. Paxinos G, Huang X, Toga A (1998) The Rhesus monkey brain in stereotaxic coordinates. Academic Press, USAGoogle Scholar
  29. Pekny M, Pekna M (2014) Astrocyte reactivity and reactive astrogliosis: costs and benefits. Physiol Rev 94:1077–1098. doi: 10.1152/physrev.00041.2013 CrossRefPubMedGoogle Scholar
  30. Pekny M, Wilhelmsson U, Pekna M (2014) The dual role of astrocyte activation and reactive gliosis. Neurosci Lett 565:30–38. doi: 10.1016/j.neulet.2013.12.071 CrossRefPubMedGoogle Scholar
  31. Peoples C, Spana S, Ashkan K et al (2012) Photobiomodulation enhances nigral dopaminergic cell survival in a chronic MPTP mouse model of Parkinson’s disease. Parkinsonism Relat Disord 18:469–476. doi: 10.1016/j.parkreldis.2012.01.005 CrossRefPubMedGoogle Scholar
  32. Reinhard JF Jr, Miller DB, O’Callaghan JP (1988) The neurotoxicant MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) increases glial fibrillary acidic protein and decreases dopamine levels of the mouse striatum: evidence for glial response to injury. Neurosci Lett 95:246–251CrossRefPubMedGoogle Scholar
  33. Reinhart F, El Massri N, Darlot F et al (2015) Evidence for improved behaviour and neuroprotection after intracranial application of near infrared light in a hemi-parkinsonian rat model. J Neurosurg 27:1–13Google Scholar
  34. Rojas J, Gonzalez-Lima F (2011) Low-level light therapy of the eye and brain. Eye Brain 3:49–67Google Scholar
  35. Rutar M, Natoli R, Chia RX et al (2015) Chemokine-mediated inflammation in the degenerating retina is coordinated by Müller cells, activated microglia, and retinal pigment epithelium. J Neuroinflammation 12:8. doi: 10.1186/s12974-014-0224-1 CrossRefPubMedPubMedCentralGoogle Scholar
  36. Schneider JS, Gonczi H, Decamp E (2003) Development of levodopa-induced dyskinesias in parkinsonian monkeys may depend upon rate of symptom onset and/or duration of symptoms. Brain Res 990:38–44CrossRefPubMedGoogle Scholar
  37. Shaw VE, Spana S, Ashkan K et al (2010) Neuroprotection of midbrain dopaminergic cells in MPTP-treated mice after near-infrared light treatment. J Comp Neurol 518:25–40. doi: 10.1002/cne.22207 CrossRefPubMedGoogle Scholar
  38. Strömberg I, Björklund H, Dahl D et al (1986) Astrocyte responses to dopaminergic denervations by 6-hydroxydopamine and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine as evidenced by glial fibrillary acidic protein immunohistochemistry. Brain Res Bull 17:225–236. doi: 10.1016/0361-9230(86)90119-X CrossRefPubMedGoogle Scholar
  39. Verkhratsky A, Parpura V, Pekna M et al (2014) Glia in the pathogenesis of neurodegenerative diseases. Biochem Soc Trans 42:1291–1301. doi: 10.1042/BST20140107 CrossRefPubMedGoogle Scholar
  40. Wallace BA, Ashkan K, Heise CE et al (2007) Survival of midbrain dopaminergic cells after lesion or deep brain stimulation of the subthalamic nucleus in MPTP-treated monkeys. Brain 130:2129–2145. doi: 10.1093/brain/awm137 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Nabil El Massri
    • 1
  • Cécile Moro
    • 2
  • Napoleon Torres
    • 2
  • Fannie Darlot
    • 2
  • Diane Agay
    • 2
  • Claude Chabrol
    • 2
  • Daniel M. Johnstone
    • 3
  • Jonathan Stone
    • 3
  • Alim-Louis Benabid
    • 2
  • John Mitrofanis
    • 1
  1. 1.Department of Anatomy F13University of SydneySydneyAustralia
  2. 2.University Grenoble AlpesGrenobleFrance
  3. 3.Department of Physiology F13University of SydneySydneyAustralia

Personalised recommendations