Advertisement

Experimental Brain Research

, Volume 234, Issue 10, pp 2773–2785 | Cite as

Multifractal signatures of complexity matching

  • Didier Delignières
  • Zainy M. H. Almurad
  • Clément Roume
  • Vivien Marmelat
Research Article

Abstract

The complexity matching effect supposes that synchronization between complex systems could emerge from multiple interactions across multiple scales and has been hypothesized to underlie a number of daily-life situations. Complexity matching suggests that coupled systems tend to share similar scaling properties, and this phenomenon is revealed by a statistical matching between the scaling exponents that characterize the respective behaviors of both systems. However, some recent papers suggested that this statistical matching could originate from local adjustments or corrections, rather than from a genuine complexity matching between systems. In the present paper, we propose an analysis method based on correlation between multifractal spectra, considering different ranges of time scales. We analyze several datasets collected in various situations (bimanual coordination, interpersonal coordination, and walking in synchrony with a fractal metronome). Our results show that this method is able to distinguish between situations underlain by genuine statistical matching and situations where statistical matching results from local adjustments.

Keywords

Synchronization Coordination Complexity matching Multifractals 

Notes

Acknowledgments

We thank Prof. Andras Eke who kindly provided us with the MATLAB code for the multifractal focus-based method.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Abney DH, Paxton A, Dale R, Kello CT (2014) Complexity matching in dyadic conversation. J Exp Psychol-Gen 143:2304–2315. doi: 10.1037/xge0000021 CrossRefPubMedGoogle Scholar
  2. Almurad ZMH, Delignières D (2016) Evenly spacing in detrended fluctuation analysis. Phys Stat Mech Appl 451:63–69. doi: 10.1016/j.physa.2015.12.155 CrossRefGoogle Scholar
  3. Aquino G, Bologna M, Grigolini P, West BJ (2010) Beyond the death of linear response: 1/f optimal information transport. Phys Rev Lett 105:069901. doi: 10.1103/PhysRevLett.105.069901 CrossRefGoogle Scholar
  4. Aquino G, Bologna M, West BJ, Grigolini P (2011) Transmission of information between complex systems: 1/f resonance. Phys Rev E 83:051130. doi: 10.1103/PhysRevE.83.051130 CrossRefGoogle Scholar
  5. Assisi CG, Jirsa VK, Kelso JAS (2005) Dynamics of multifrequency coordination using parametric driving: theory and experiment. Biol Cybern 93:6–21. doi: 10.1007/s00422-005-0558-y CrossRefPubMedGoogle Scholar
  6. Chen YQ, Ding MZ, Kelso JAS (1997) Long memory processes (1/f(alpha) type) in human coordination. Phys Rev Lett 79:4501–4504. doi: 10.1103/PhysRevLett.79.4501 CrossRefGoogle Scholar
  7. Chen YQ, Ding MZ, Kelso JAS (2001) Origins of timing errors in human sensorimotor coordination. J Mot Behav 33:3–8CrossRefPubMedGoogle Scholar
  8. Delignières D, Marmelat V (2014) Strong anticipation and long-range cross-correlation: application of detrended cross-correlation analysis to human behavioral data. Phys Stat Mech Its Appl 394:47–60CrossRefGoogle Scholar
  9. Delignières D, Torre K (2011) Event-based and emergent timing: Dichotomy or continuum? A reply to Repp and Steinman (2010). J Mot Behav 43:311–318. doi: 10.1080/00222895.2011.588274 CrossRefPubMedGoogle Scholar
  10. Delignières D, Torre K, Lemoine L (2005) Methodological issues in the application of monofractal analyses in psychological and behavioral research. Nonlinear Dyn Psychol Life Sci 9:435–461Google Scholar
  11. Delignières D, Ramdani S, Lemoine L et al (2006) Fractal analyses for “short” time series: a re-assessment of classical methods. J Math Psychol 50:525–544. doi: 10.1016/j.jmp.2006.07.004 CrossRefGoogle Scholar
  12. Delignières D, Torre K, Lemoine L (2008) Fractal models for event-based and dynamical timers. Acta Psychol (Amst) 127:382–397. doi: 10.1016/j.actpsy.2007.07.007 CrossRefGoogle Scholar
  13. Fine JM, Likens AD, Amazeen EL, Amazeen PG (2015) Emergent complexity matching in interpersonal coordination: local dynamics and global variability. J Exp Psychol Hum Percept Perform. doi: 10.1037/xhp0000046 Google Scholar
  14. Fink PW, Foo P, Jirsa VK, Kelso JAS (2000) Local and global stabilization of coordination by sensory information. Exp Brain Res 134:9–20. doi: 10.1007/s002210000439 CrossRefPubMedGoogle Scholar
  15. Gilden DL (1997) Fluctuations in the time required for elementary decisions. Psychol Sci 8:296–301. doi: 10.1111/j.1467-9280.1997.tb00441.x CrossRefGoogle Scholar
  16. Gilden DL (2001) Cognitive emissions of 1/f noise. Psychol Rev 108:33–56. doi: 10.1037/0033-295X.108.1.33 CrossRefPubMedGoogle Scholar
  17. Haken H, Kelso J, Bunz H (1985) A theoretical-model of phase-transitions in human hand movements. Biol Cybern 51:347–356. doi: 10.1007/BF00336922 CrossRefPubMedGoogle Scholar
  18. Hove MJ, Suzuki K, Uchitomi H et al (2012) Interactive rhythmic auditory stimulation reinstates natural 1/f timing in gait of Parkinson’s patients. PLoS ONE 7:e32600CrossRefPubMedPubMedCentralGoogle Scholar
  19. Ihlen EAF, Vereijken B (2010) Interaction-dominant dynamics in human cognition: beyond 1/f(alpha) fluctuation. J Exp Psychol-Gen 139:436–463. doi: 10.1037/a0019098 CrossRefPubMedGoogle Scholar
  20. Kaipust JP, McGrath D, Mukherjee M, Stergiou N (2013) Gait variability is altered in older adults when listening to auditory stimuli with differing temporal structures. Ann Biomed Eng 41:1595–1603. doi: 10.1007/s10439-012-0654-9 CrossRefPubMedGoogle Scholar
  21. Kantelhardt JW, Zschiegner SA, Koscielny-Bunde E et al (2002) Multifractal detrended fluctuation analysis of nonstationary time series. Phys-Stat Mech Appl 316:87–114. doi: 10.1016/S0378-4371(02)01383-3 CrossRefGoogle Scholar
  22. Leise T, Cohen A (2007) Nonlinear oscillators at our fingertips. Am Math Mon 114:14–28Google Scholar
  23. Mafahim JU, Lambert D, Zare M, Grigolini P (2015) Complexity matching in neural networks. New J Phys 17:015003. doi: 10.1088/1367-2630/17/1/015003 CrossRefGoogle Scholar
  24. Makowiec D, Rynkiewicz A, Galaska R et al (2011) Reading multifractal spectra: aging by multifractal analysis of heart rate. EPL 94:68005. doi: 10.1209/0295-5075/94/68005 CrossRefGoogle Scholar
  25. Marmelat V, Delignières D (2012) Strong anticipation: complexity matching in interpersonal coordination. Exp Brain Res 222:137–148. doi: 10.1007/s00221-012-3202-9 CrossRefPubMedGoogle Scholar
  26. Marmelat V, Delignières D (2011) Complexity, coordination, and health: avoiding pitfalls and erroneous interpretations in fractal analyses. Med-Lith 47:393–398Google Scholar
  27. Marmelat V, Torre K, Beek PJ, Daffertshofer A (2014) Persistent fluctuations in stride intervals under fractal auditory stimulation. PLoS ONE 9:e91949. doi: 10.1371/journal.pone.0091949 CrossRefPubMedPubMedCentralGoogle Scholar
  28. Mukli P, Nagy Z, Eke A (2015) Multifractal formalism by enforcing the universal behavior of scaling functions. Phys Stat Mech Appl 417:150–167. doi: 10.1016/j.physa.2014.09.002 CrossRefGoogle Scholar
  29. Oswiecimka P, Kwapien J, Drozdz S (2006) Wavelet versus detrended fluctuation analysis of multifractal structures. Phys Rev E 74:016103. doi: 10.1103/PhysRevE.74.016103 CrossRefGoogle Scholar
  30. Peng CK, Mietus J, Hausdorff JM et al (1993) Long-range anticorrelations and non-Gaussian behavior of the heartbeat. Phys Rev Lett 70:1343–1346CrossRefGoogle Scholar
  31. Podobnik B, Stanley HE (2008) Detrended cross-correlation analysis: a new method for analyzing two nonstationary time series. Phys Rev Lett 100:084102. doi: 10.1103/PhysRevLett.100.084102 CrossRefPubMedGoogle Scholar
  32. Rhea CK, Kiefer AW, Wittstein MW et al (2014) Fractal gait patterns are retained after entrainment to a fractal stimulus. PLoS ONE 9:e106755. doi: 10.1371/journal.pone.0106755 CrossRefPubMedPubMedCentralGoogle Scholar
  33. Schöner G, Haken H, Kelso J (1986) A Stochastic-theory of phase-transitions in human hand movement. Biol Cybern 53:247–257. doi: 10.1007/BF00336995 CrossRefPubMedGoogle Scholar
  34. Schumann AY, Kantelhardt JW (2011) Multifractal moving average analysis and test of multifractal model with tuned correlations. Phys -Stat Mech Its Appl 390:2637–2654. doi: 10.1016/j.physa.2011.03.002 CrossRefGoogle Scholar
  35. Stephen DG, Dixon JA (2011) Strong anticipation: multifractal cascade dynamics modulate scaling in synchronization behaviors. Chaos, Solitons Fractals 44:160–168. doi: 10.1016/j.chaos.2011.01.005 CrossRefGoogle Scholar
  36. Stephen DG, Stepp N, Dixon JA, Turvey MT (2008) Strong anticipation: sensitivity to long-range correlations in synchronization behavior. Phys Stat Mech Its Appl 387:5271–5278CrossRefGoogle Scholar
  37. Torre K, Delignières D (2008a) Distinct ways of timing movements in bimanual coordination tasks: contribution of serial correlation analysis and implications for modeling. Acta Psychol (Amst) 129:284–296CrossRefGoogle Scholar
  38. Torre K, Delignières D (2008b) Unraveling the finding of 1/f(beta) noise in self-paced and synchronized tapping: a unifying mechanistic model. Biol Cybern 99:159–170. doi: 10.1007/s00422-008-0247-8 CrossRefPubMedGoogle Scholar
  39. Torre K, Wagenmakers E-J (2009) Theories and models for 1/f(beta) noise in human movement science. Hum Mov Sci 28:297–318. doi: 10.1016/j.humov.2009.01.001 CrossRefPubMedGoogle Scholar
  40. Torre K, Delignières D et al (2009) Fractal dynamics of human gait: a reassessment of the 1996 data of Hausdorff. J Appl Physiol 106:1272–1279. doi: 10.1152/japplphysiol.90757.2008 CrossRefPubMedGoogle Scholar
  41. Torre K, Varlet M, Marmelat V (2013) Predicting the biological variability of environmental rhythms: Weak or strong anticipation for sensorimotor synchronization? Brain Cogn 83:342–350. doi: 10.1016/j.bandc.2013.10.002 CrossRefPubMedGoogle Scholar
  42. West BJ, Geneston EL, Grigolini P (2008) Maximizing information exchange between complex networks. Phys Rep-Rev Sect Phys Lett 468:1–99. doi: 10.1016/j.physrep.2008.06.003 Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Didier Delignières
    • 1
  • Zainy M. H. Almurad
    • 1
    • 2
  • Clément Roume
    • 1
  • Vivien Marmelat
    • 1
    • 3
  1. 1.EA 2991, EuromovUniversity of MontpellierMontpellierFrance
  2. 2.Faculty of Physical EducationUniversity of MossulMossulIraq
  3. 3.Center for Research in Human Movement VariabilityUniversity of Nebraska at OmahaOmahaUSA

Personalised recommendations