Advertisement

Experimental Brain Research

, Volume 234, Issue 9, pp 2515–2527 | Cite as

Sensitivity to communicative and non-communicative gestures in adolescents and adults with autism spectrum disorder: saccadic and pupillary responses

  • Iyad AldaqreEmail author
  • Tobias Schuwerk
  • Moritz M. Daum
  • Beate Sodian
  • Markus Paulus
Research Article

Abstract

Nonverbal communication using social cues, like gestures, governs a great part of our daily interactions. It has been proposed that people with autism spectrum disorder (ASD) show a deviant processing of social cues throughout their social cognitive development. However, social cues do not always convey an intention to communicate. Hence, the aim of this study was to test the sensitivity of adolescents and adults with ASD and neurotypical controls to social cues of high communicative (pointing) and low communicative values (grasping). For this purpose, we employed a spatial cueing paradigm with both Cue Types and compared saccadic reaction times (SRTs) between conditions in which the target appeared at a location which was congruent versus incongruent with the direction of the cue. Results showed that both adolescents and adults with ASD had slower SRTs for the incongruent relative to the congruent condition for both Cue Types, reflecting sensitivity to these cues. Additionally, mental effort during the processing of these social cues was assessed by means of pupil dilation. This analysis revealed that, while individuals with and without ASD required more mental effort to process incongruent compared to the congruent cues, cues with higher communicative value posed more processing load for the ASD group. These findings suggest that the perception of social gestures is intact in ASD but requires additional mental effort for gestures with higher communicative value.

Keywords

Autism spectrum disorder Pointing Grasping Eye tracking Pupil dilation Saccadic reaction time 

Notes

Acknowledgments

This research was funded by a grant from the Volkswagen Foundation [Grant Number: Az. 86 755; Research group “Knowledge through interaction”]. We thank all participants who took part in this study. We are grateful to Nicosia Nieß and Gertrud Niggemann (Autismus Oberbayern e.V.), Martina Schabert (Autismuszentrum Oberbayern) and Martin Sobanski (Heckscher-Klinikum gGmbH) for their support. We also thank Tabea Schädel, Veronika Sophie Eisenschmid and Verena Rampeltshammer for their help with data acquisition.

References

  1. Adams NC, Jarrold C (2012) Inhibition in autism: children with autism have difficulty inhibiting irrelevant distractors but not prepotent responses. J Autism Dev Disord 42:1052–1063. doi: 10.1007/s10803-011-1345-3 CrossRefPubMedGoogle Scholar
  2. Aglioti SM, Cesari P, Romani M, Urgesi C (2008) Action anticipation and motor resonance in elite basketball players. Nat Neurosci 11:1109–1116. doi: 10.1038/nn.2182 CrossRefPubMedGoogle Scholar
  3. Aldaqre I, Paulus M, Sodian B (2014) Referential gaze and word learning in adults with autism. Autism 19(8):944–955. doi: 10.1177/1362361314556784 CrossRefPubMedGoogle Scholar
  4. Ambrosini E, Costantini M, Sinigaglia C (2011) Grasping with the eyes. J Neurophysiol 106(3):1437–1442. doi: 10.1152/jn.00118.2011 CrossRefPubMedGoogle Scholar
  5. American Psychiatric Association (2013) Diagnostic and statistical manual of mental disorders, 5th edn. American Psychiatric Press, WashingtonGoogle Scholar
  6. Ames C, Fletcher-Watson S (2010) A review of methods in the study of attention in autism. Dev Rev 30(1):52–73. doi: 10.1016/j.dr.2009.12.003 CrossRefGoogle Scholar
  7. Baron-Cohen S (1989) Perceptual role taking and protodeclarative pointing in autism. Br J Dev Psychol 7:113–127. doi: 10.1111/j.2044-835X.1989.tb00793.x CrossRefGoogle Scholar
  8. Baron-Cohen S, Wheelwright S, Skinner R, Martin J, Clubley E (2001) The autism-spectrum quotient (AQ): evidence from Asperger syndrome/high-functioning autism, males and females, scientists and mathematicians. J Autism Dev Disord 31(1):5–17. doi: 10.1023/A:1005653411471 CrossRefPubMedGoogle Scholar
  9. Beatty J, Lucero-Wagoner B (2000) The pupillary system. In: Cacioppo JT, Tassinary LG, Berntson GG (eds) Handbook of psychophysiology, 2nd edn. Cambridge University Press, New York, pp 142–162Google Scholar
  10. Bertenthal BI, Boyer TW, Harding S (2014) When do infants begin to follow a point? Dev Psychol 50(8):2036–2048. doi: 10.1037/a0037152 CrossRefPubMedGoogle Scholar
  11. Blakemore S-J, Choudhury S (2006) Development of the adolescent brain: implications for executive function and social cognition. J Child Psychol Psychiatry 47(3–4):296–312. doi: 10.1111/j.1469-7610.2006.01611.x CrossRefPubMedGoogle Scholar
  12. Bölte S, Poustka F (2008) SRS Skala zur Erfassung sozialer Reaktivität. Dimensionale Autismus-Diagnostik. Deutsche Fassung der Social Responsiveness Scale (SRS) von John N. Constatino und Christian P. Gruber. Hans Huber, BernGoogle Scholar
  13. Bölte S and Poutska F (2006) Fragebogen zur Sozialen Kommunikation—Autismus Screening (FSK). Verlag Hans Huber, BernGoogle Scholar
  14. Boria S, Fabbri-Destro M, Cattaneo L, Sparaci L, Sinigaglia C, Santelli E et al (2009) Intention understanding in autism. PLoS ONE 4(5):e5596. doi: 10.1371/journal.pone.0005596 CrossRefPubMedPubMedCentralGoogle Scholar
  15. Bui R, Buliung RN, Remmel TK (2012) Aspace: a collection of functions for estimating centrographic statistics and computational geometries for spatial point patterns (version 3.2). Retrieved from http://CRAN.R-project.org/package=aspace
  16. Burnett S, Sebastian C, Cohen Kadosh K, Blakemore S-J (2011) The social brain in adolescence: evidence from functional magnetic resonance imaging and behavioural studies. Neurosci Biobehav Rev 35(8):1654–1664. doi: 10.1016/j.neubiorev.2010.10.011 CrossRefPubMedGoogle Scholar
  17. Cabeza R, McIntosh AR, Tulving E, Nyberg L, Grady CL (1997) Age-related differences in effective neural connectivity during encoding and recall. Neuroreport 8(16):3479–3483CrossRefPubMedGoogle Scholar
  18. Casey BJ, Gordon CT, Mannheim GB, Rumsey JM (1993) Dysfunctional attention in autistic savants. J Clin Exp Neuropsychol 15:933–946. doi: 10.1080/01688639308402609 CrossRefPubMedGoogle Scholar
  19. Chawarska K, Klin A, Volkmar F (2003) Automatic attention cueing through eye movement in 2-year-old children with autism. Child Dev 74(4):1108–1122. doi: 10.1111/1467-8624.00595 CrossRefPubMedGoogle Scholar
  20. Constantino JN, Gruber CP (2005) Social Responsiveness Scale (SRS). Western Psychological Services, Los AngelesGoogle Scholar
  21. Csibra G, Gergely G (2009) Natural pedagogy. Trends Cogn Sci 13(4):148–153. doi: 10.1016/j.tics.2009.01.005 CrossRefPubMedGoogle Scholar
  22. Cusack JP, Williams JH, Neri P (2015) Action perception is intact in autism spectrum disorder. J Neurosci 35(5):1849–1857. doi: 10.1523/JNEUROSCI.4133-13.2015 CrossRefPubMedPubMedCentralGoogle Scholar
  23. Daum MM, Gredebäck G (2011a) The development of grasping comprehension in infancy: covert shifts of attention caused by referential actions. Exp Brain Res 208:297–307. doi: 10.1007/s00221-010-2479-9 CrossRefPubMedGoogle Scholar
  24. Daum MM, Gredebäck G (2011b) Spatial cueing by referential human gestures, arrows and mechanical devices. Int J Mind Brain Cogn 2:113–126Google Scholar
  25. Daum MM, Ulber J, Gredebäck G (2013) The development of pointing perception in infancy: effects of communicative signals on covert shifts of attention. Dev Psychol 49(10):1898–1908. doi: 10.1037/a0031111 CrossRefPubMedGoogle Scholar
  26. Dawson G, Toth K, Abbott R, Osterling J, Munson J, Estes A, Liaw J (2004) Early social attention impairments in autism: social orienting, joint attention, and attention to distress. Dev Psychol 40(2):271–283. doi: 10.1037/0012-1649.40.2.271 CrossRefPubMedGoogle Scholar
  27. Driver J IV, Davis G, Ricciardelli P, Kidd P, Maxwell E, Baron-Cohen S (1999) Gaze perception triggers reflexive visuospatial orienting. Vis Cogn 6(5):509–540. doi: 10.1080/135062899394920 CrossRefGoogle Scholar
  28. Falck-Ytter T, von Hofsten C (2011) How special is social looking in ASD: a review. Prog Brain Res 189:209–222. doi: 10.1016/B978-0-444-53884-0.00026-9 CrossRefPubMedGoogle Scholar
  29. Falck-Ytter T, Fernell E, Gillberg C, von Hofsten C (2010) Face scanning distinguishes social from communication impairments in autism. Dev Sci 13(6):864–875. doi: 10.1111/j.1467-7687.2009.00942.x CrossRefPubMedGoogle Scholar
  30. Farroni T, Csibra G, Simion F, Johnson MH (2002) Eye contact detection in humans from birth. Proc Natl Acad Sci 99(14):9602–9605. doi: 10.1073/pnas.152159999 CrossRefPubMedPubMedCentralGoogle Scholar
  31. Fletcher-Watson S, Leekam SR, Benson V, Frank MC, Findlay JM (2009) Eye-movements reveal attention to social information in autism spectrum disorder. Neuropsychologia 47(1):248–257. doi: 10.1016/j.neuropsychologia.2008.07.016 CrossRefPubMedGoogle Scholar
  32. Freitag CM, Retz-Junginger P, Retz W, Seitz C, Palmason H, Meyer J, Rösler M, von Gontard A (2007) Evaluation der deutschen Version des Autismus-Spektrum-Quotienten (AQ)—die Kurzversion. Z Klin Psychol Psychother 36(4):280–289CrossRefGoogle Scholar
  33. Frischen A, Bayliss AP, Tipper SP (2007) Gaze cueing of attention: visual attention, social cognition, and individual differences. Psychol Bull 133(4):694–724. doi: 10.1037/0033-2909.133.4.694 CrossRefPubMedPubMedCentralGoogle Scholar
  34. Gredebäck G, Daum MM (2015) The microstructure of action perception in infancy: decomposing the temporal structure of social information processing. Child Dev Perspect 9(2):79–83. doi: 10.1111/cdep.12109 CrossRefGoogle Scholar
  35. Hood BM, Willen JD, Driver J (1998) Adult’s eyes trigger shifts of visual attention in human infants. Psychol Sci 9:131–134. doi: 10.1111/1467-9280.00024 CrossRefGoogle Scholar
  36. Klin A, Jones W, Schultz R, Volkmar F, Cohen D (2002) Visual fixation patterns during viewing of naturalistic social situations as predictors of social competence in individuals with autism. Arch Gen Psychiatry 59(9):809–816. doi: 10.1001/archpsyc.59.9.809 CrossRefPubMedGoogle Scholar
  37. Laeng B, Sirois S, Gredebäck G (2012) Pupillometry: a window to the preconscious? Perspect Psychol Sci 7(1):18–27. doi: 10.1177/1745691611427305 CrossRefPubMedGoogle Scholar
  38. Langdon R, Smith P (2005) Spatial cueing by social versus nonsocial directional signals. Vis Cogn 12(8):1497–1527. doi: 10.1080/13506280444000805 CrossRefGoogle Scholar
  39. Lawrence MA (2013) ez: Easy analysis and visualization of factorial experiments (version 4.2-2). Retrieved from: http://CRAN.R-project.org/package=ez
  40. Lehrl S (2005) Mehrfachwahl-Wortschatz-Intelligenztest MWT- B. Spitta Verlag, BalingenGoogle Scholar
  41. Liszkowski U, Carpenter M, Henning A, Striano T, Tomasello M (2004) Twelve-month-olds point to share attention and interest. Dev Sci 7(3):297–307. doi: 10.1111/j.1467-7687.2004.00349.x CrossRefPubMedGoogle Scholar
  42. Martin J (2012) Tobii workspace extension for presentation. In: VisionSpace—FH JOANNEUM. Retrieved 20 Aug 2012, from http://visionspace.at/index.php?id=3andL=1
  43. Mehrabian A (2007) Nonverbal communication. Aldine Transaction, New BrunswickGoogle Scholar
  44. Moresi S, Adam JJ, Rijcken J, Van Gerven PWM (2008) Cue validity effects in response preparation: a pupillometric study. Brain Res 1196:94–102. doi: 10.1016/j.brainres.2007.12.026 CrossRefPubMedGoogle Scholar
  45. Müller HJ, Rabbitt PMA (1989) Reflexive and voluntary orienting of visual attention: time course of activation and resistance to interruption. J Exp Psychol 15:315–330. doi: 10.1037/0096-1523.15.2.315 Google Scholar
  46. Palmer CJ, Seth AK, Hohwy J (2015) The felt presence of other minds: predictive processing, counterfactual predictions, and mentalising in autism. Conscious Cogn. doi: 10.1016/j.concog.2015.04.007 PubMedGoogle Scholar
  47. Park DC, Reuter-Lorenz P (2009) The adaptive brain: aging and neurocognitive scaffolding. Annu Rev Psychol 60(1):173–196. doi: 10.1146/annurev.psych.59.103006.093656 CrossRefPubMedPubMedCentralGoogle Scholar
  48. Paulus M (2012) Action mirroring and action understanding: an ideomotor and attentional account. Psychol Res 76:760–767. doi: 10.1007/s00426-011-0385-9 CrossRefPubMedGoogle Scholar
  49. Paulus M, Fikkert P (2014) Conflicting social cues: fourteen-and 24-month-old infants’ reliance on gaze and pointing cues in word learning. J Cogn Dev 15(1):43–59. doi: 10.1080/15248372.2012.698435 CrossRefGoogle Scholar
  50. Petermann F, Petermann U (2008) Hamburg-Wechsler-Intelligenztest für Kinder IV (HAWIK-IV). Huber, BernGoogle Scholar
  51. Posner MI (1980) Orienting of attention. Q J Exp Psychol 32:3–25. doi: 10.1080/00335558008248231 CrossRefPubMedGoogle Scholar
  52. Pruett JR, LaMacchia A, Hoertel S, Squire E, McVey K, Todd RD, Constantino JN, Petersen SE (2011) Social and non-social cueing of visuospatial attention in autism and typical development. J Autism Dev Disord 41:715–731. doi: 10.1007/s10803-010-1090-z CrossRefPubMedPubMedCentralGoogle Scholar
  53. R Core Team (2013) R: a language and environment for statistical computing (Version 3.0.2). R Foundation for Statistical Computing, Vienna, Austria. Retrieved from http://www.R-project.org/
  54. Reuter-Lorenz PA, Jonides J, Smith EE, Hartley A, Miller A, Marshuetz C, Koeppe RA (2000) Age differences in the frontal lateralization of verbal and spatial working memory revealed by PET. J Cogn Neurosci 12(1):174–187. doi: 10.1162/089892900561814 CrossRefPubMedGoogle Scholar
  55. Ristic J, Mottron L, Friesen CK, Iarocci G, Burack JA, Kingstone A (2005) Eyes are special but not for everyone: the case of autism. Cogn Brain Res 24(3):715–718. doi: 10.1016/j.cogbrainres.2005.02.007 CrossRefGoogle Scholar
  56. Rutter M, Bailey A, Lord C (2003) SCQ. The social communication questionnaire. Western Psychological Services, TorranceGoogle Scholar
  57. Salvucci DD, Goldberg JH (2000) Identifying fixations and saccades in eye-tracking protocols. In: Proceedings of the 2000 symposium on eye tracking research and applications, ACM, New York, pp 71–78. doi: 10.1145/355017.355028
  58. Schultz RT (2005) Developmental deficits in social perception in autism: the role of the amygdala and fusiform face area. Int J Dev Neurosci 23(2–3):125–141. doi: 10.1016/j.ijdevneu.2004.12.012 CrossRefPubMedGoogle Scholar
  59. Senju A, Csibra G (2008) Gaze following in human infants depends on communicative signals. Curr Biol 18(9):668–671. doi: 10.1016/j.cub.2008.03.059 CrossRefPubMedGoogle Scholar
  60. Senju A, Tojo Y, Dairoku H, Hasegawa T (2004) Reflexive orienting in response to eye gaze and an arrow in children with and without autism. J Child Psychol Psychiatry 45(3):445–458. doi: 10.1111/j.1469-7610.2004.00236.x CrossRefPubMedGoogle Scholar
  61. Sodian B, Thoermer C (2004) Infants’ understanding of looking, pointing, and reaching as cues to goal-directed action. J Cogn Dev 5(3):289–316. doi: 10.1207/s15327647jcd0503_1 CrossRefGoogle Scholar
  62. Tager-Flusberg H (2001) A reexamination of the theory of mind hypothesis of autism. In: Burack JA, Charman T, Yirmiya N, Zelazo PR (eds) The development of autism: perspectives from theory and research. Lawrence Erlbaum Associates, New JerseyGoogle Scholar
  63. Tomasello M, Carpenter M, Liszkowski U (2007) A new look at infant pointing. Child Dev 78:705–722. doi: 10.1111/j.1467-8624.2007.01025.x CrossRefPubMedGoogle Scholar
  64. Verschoor SA, Paulus M, Spape M, Biro S, Hommel B (2015) The developing cognitive substrate of sequential action control in 9- to 12-month-olds: evidence for concurrent activation models. Cognition 138:64–78. doi: 10.1016/j.cognition.2015.01.005 CrossRefPubMedGoogle Scholar
  65. Von Aster M, Neubauer A, Horn R (2006) Wechsler Intelligenztest für Erwachsene (WIE). Deutschsprachige Bearbeitung und Adaptation des WAIS- III von David Wechsler. Harcourt Test Services, Frankfurt/MainGoogle Scholar
  66. von Hofsten C, Vishton P, Spelke ES, Feng Q (1998) Predictive action in infancy: tracking and reaching for moving objects. Cognition 67(3):255–285. doi: 10.1016/S0010-0277(98)00029-8 CrossRefGoogle Scholar
  67. Wang S, Jiang M, Duchesne XM, Laugeson EA, Kennedy DP, Adolphs R, Zhao Q (2015) Atypical visual saliency in autism spectrum disorder quantified through model-based eye tracking. Neuron 88(3):604–616. doi: 10.1016/j.neuron.2015.09.042 CrossRefPubMedPubMedCentralGoogle Scholar
  68. Weiss RH (2006) Grundintelligenztest Skala 2—Revision (CFT 20-R). Hogrefe, GöttingenGoogle Scholar
  69. Wickham H (2007) Reshaping data with the reshape package. J Stat Softw 21(12):1–20. Retrieved from http://www.jstatsoft.org/v21/i12/
  70. World Health Organization (WHO) (1993) ICD-10: The ICD-10 classification of mental and behavioural disorders: clinical descriptions and diagnostic guidelines. World Health Organization, GenevaGoogle Scholar
  71. Wronski C, Daum MM (2014) Spatial orienting following dynamic cues in infancy: grasping hands versus inanimate objects. Dev Psychol 50(8):2020–2029. doi: 10.1037/a0037155 CrossRefPubMedGoogle Scholar
  72. Zeileis A, Grothendieck G (2005) zoo: S3 Infrastructure for regular and irregular time series. J Stat Softw 14(6):1–27. Retrieved from http://www.jstatsoft.org/v14/i06/

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Iyad Aldaqre
    • 1
    Email author
  • Tobias Schuwerk
    • 1
    • 2
  • Moritz M. Daum
    • 3
  • Beate Sodian
    • 1
  • Markus Paulus
    • 1
  1. 1.Department of PsychologyLudwig-Maximilians UniversityMunichGermany
  2. 2.Department of Psychiatry and PsychotherapyUniversity of RegensburgRegensburgGermany
  3. 3.Department of PsychologyUniversity of ZurichZurichSwitzerland

Personalised recommendations