Experimental Brain Research

, Volume 234, Issue 9, pp 2433–2446 | Cite as

The neural mechanisms of re-experiencing physical fatigue sensation: a magnetoencephalography study

Research Article

Abstract

It has been hypothesized that fatigue sensation impairs the ability and efficiency to perform activities and can be a cause of fatigue itself. As such, it is important to clarify the neural mechanisms of fatigue sensation. The re-experiencing of mental fatigue sensation involves brain regions including Brodmann’s area (BA) 40, BA 39, and the pulvinar nucleus. In the present study, we examined neural activity caused by re-experiencing a physical fatigue sensation that had been experienced. Fifteen healthy male volunteers participated in fatigue and control experiments in a crossover fashion. In the fatigue experiment, participants performed a handgrip task for 10 min to induce a physical fatigue sensation and then re-experienced the physical fatigue sensation during magnetoencephalography (MEG) session. In the control experiment, they did not perform the handgrip task but re-experienced the sensation without physical fatigue in an MEG session. Neural activity related to re-experiencing physical fatigue sensations of the right hand (right condition), left hand (left condition), and related to listening to the auditory cues (sound condition) was assessed using spatial filtering analyses of the MEG data. Changes in oscillatory band power in some brain regions, including BA 40, were common between the right and left conditions. A part of the neural activity related to the re-experiencing physical fatigue sensation, such as the decrease in alpha (8–13 Hz) band power in the BA 40, was also observed in the sound condition. These findings may help to understand the neural mechanisms related to intentionally and unintentionally re-experiencing physical fatigue sensation.

Keywords

Fatigue Physical fatigue sensation Magnetoencephalography (MEG) Re-experiencing 

References

  1. Attal Y, Bhattacharjee M, Yelnik J et al (2007) Modeling and detecting deep brain activity with MEG & EEG. Conf Proc IEEE Eng Med Biol Soc 2007:4937–4940. doi:10.1109/IEMBS.2007.4353448 PubMedGoogle Scholar
  2. Balderston NL, Schultz DH, Baillet S, Helmstetter FJ (2013) How to detect amygdala activity with magnetoencephalography using source imaging. J Vis Exp. doi:10.3791/50212 PubMedPubMedCentralGoogle Scholar
  3. Bush G, Luu P, Posner MI (2000) Cognitive and emotional influences in anterior cingulate cortex. Trends Cogn Sci 4:215–222CrossRefPubMedGoogle Scholar
  4. Caseras X, Mataix-Cols D, Rimes KA et al (2008) The neural correlates of fatigue: an exploratory imaginal fatigue provocation study in chronic fatigue syndrome. Psychol Med 38:941–951. doi:10.1017/S0033291708003450 CrossRefPubMedGoogle Scholar
  5. Cella D, Lai JS, Chang CH, Peterman A, Slavin M (2002) Fatigue in cancer patients compared with fatigue in the general United States population. Cancer 94:528–538. doi:10.1002/cncr.10245 CrossRefPubMedGoogle Scholar
  6. Cerqueira CT, Almeida JR, Gorenstein C et al (2008) Engagement of multifocal neural circuits during recall of autobiographical happy events. Braz J Med Biol Res 41:1076–1085CrossRefPubMedGoogle Scholar
  7. Cornwell BR, Carver FW, Coppola R, Johnson L, Alvarez R, Grillon C (2008) Evoked amygdala responses to negative faces revealed by adaptive MEG beamformers. Brain Res 1244:103–112. doi:10.1016/j.brainres.2008.09.068 CrossRefPubMedPubMedCentralGoogle Scholar
  8. Dalal SS, Guggisberg AG, Edwards E et al (2008) Five-dimensional neuroimaging: localization of the time-frequency dynamics of cortical activity. Neuroimage 40:1686–1700. doi:10.1016/j.neuroimage.2008.01.023 CrossRefPubMedPubMedCentralGoogle Scholar
  9. David A, Pelosi A, McDonald E, Stephens D, Ledger D, Rathbone R, Mann A (1990) Tired, weak, or in need of rest: fatigue among general practice attenders. BMJ 301:1199–1202CrossRefPubMedPubMedCentralGoogle Scholar
  10. David O, Kilner JM, Friston KJ (2006) Mechanisms of evoked and induced responses in MEG/EEG. Neuroimage 31:1580–1591. doi:10.1016/j.neuroimage.2006.02.034 CrossRefPubMedGoogle Scholar
  11. Davis KD, Pope GE, Crawley AP, Mikulis DJ (2002) Neural correlates of prickle sensation: a percept-related fMRI study. Nat Neurosci 5:1121–1122. doi:10.1038/nn955 CrossRefPubMedGoogle Scholar
  12. Evans AC, Kamber M, Collins DL, MacDonald D (1994) An MRI-based probabilistic atlas of neuroanatomy. Magnetic resonance scanning and epilepsy. Plenum Press, New York, pp 263–274CrossRefGoogle Scholar
  13. Fitzgerald DA, Posse S, Moore GJ, Tancer ME, Nathan PJ, Phan KL (2004) Neural correlates of internally-generated disgust via autobiographical recall: a functional magnetic resonance imaging investigation. Neurosci Lett 370:91–96. doi:10.1016/j.neulet.2004.08.007 CrossRefPubMedGoogle Scholar
  14. Friston KJ, Holmes AP, Worsley KJ (1999) How many subjects constitute a study? Neuroimage 10:1–5. doi:10.1006/nimg.1999.0439 CrossRefPubMedGoogle Scholar
  15. George MS, Ketter TA, Parekh PI, Horwitz B, Herscovitch P, Post RM (1995) Brain activity during transient sadness and happiness in healthy women. Am J Psychiatry 152:341–351CrossRefPubMedGoogle Scholar
  16. Gray JR, Braver TS, Raichle ME (2002) Integration of emotion and cognition in the lateral prefrontal cortex. Proc Natl Acad Sci USA 99:4115–4120. doi:10.1073/pnas.062381899 CrossRefPubMedPubMedCentralGoogle Scholar
  17. Harmony T (2013) The functional significance of delta oscillations in cognitive processing. Front Integr Neurosci 7:83. doi:10.3389/fnint.2013.00083 CrossRefPubMedPubMedCentralGoogle Scholar
  18. Hillebrand A, Singh KD, Holliday IE, Furlong PL, Barnes GR (2005) A new approach to neuroimaging with magnetoencephalography. Hum Brain Mapp 25:199–211. doi:10.1002/hbm.20102 CrossRefPubMedGoogle Scholar
  19. Ishii A, Tanaka M, Iwamae M, Kim C, Yamano E, Watanabe Y (2013) Fatigue sensation induced by the sounds associated with mental fatigue and its related neural activities: revealed by magnetoencephalography. Behav Brain Funct 9:24. doi:10.1186/1744-9081-9-24 CrossRefPubMedPubMedCentralGoogle Scholar
  20. Ishii A, Tanaka M, Watanabe Y (2014a) The neural mechanisms underlying the decision to rest in the presence of fatigue: a magnetoencephalography study. PLoS ONE 9:e109740. doi:10.1371/journal.pone.0109740 CrossRefPubMedPubMedCentralGoogle Scholar
  21. Ishii A, Tanaka M, Watanabe Y (2014b) The neural substrates of self-evaluation of mental fatigue: a magnetoencephalography study. PLoS ONE 9:e95763. doi:10.1371/journal.pone.0095763 CrossRefPubMedPubMedCentralGoogle Scholar
  22. Ishii A, Tanaka M, Yamano E, Watanabe Y (2014c) The neural substrates of physical fatigue sensation to evaluate ourselves: a magnetoencephalography study. Neuroscience 261:60–67CrossRefPubMedGoogle Scholar
  23. Ishii A, Karasuyama T, Kikuchi T, Tanaka M, Yamano E, Watanabe Y (2015) The neural mechanisms of re-experiencing mental fatigue sensation: a magnetoencephalography study. PLoS ONE 10:e0122455. doi:10.1371/journal.pone.0122455 CrossRefPubMedPubMedCentralGoogle Scholar
  24. Jensen O, Tesche CD (2002) Frontal theta activity in humans increases with memory load in a working memory task. Eur J Neurosci 15:1395–1399CrossRefPubMedGoogle Scholar
  25. Kimbrell TA, George MS, Parekh PI et al (1999) Regional brain activity during transient self-induced anxiety and anger in healthy adults. Biol Psychiatry 46:454–465CrossRefPubMedGoogle Scholar
  26. Kitani T (2011) Term Committee of Japanese Society of Fatigue Science. Nihon Hirougakkaishi (In Japanese) 6:1Google Scholar
  27. Klimesch W, Doppelmayr M, Russegger H, Pachinger T (1996) Theta band power in the human scalp EEG and the encoding of new information. NeuroReport 7:1235–1240CrossRefPubMedGoogle Scholar
  28. Knyazev GG (2007) Motivation, emotion, and their inhibitory control mirrored in brain oscillations. Neurosci Biobehav Rev 31:377–395. doi:10.1016/j.neubiorev.2006.10.004 CrossRefPubMedGoogle Scholar
  29. Knyazev GG (2012) EEG delta oscillations as a correlate of basic homeostatic and motivational processes. Neurosci Biobehav Rev 36:677–695. doi:10.1016/j.neubiorev.2011.10.002 CrossRefPubMedGoogle Scholar
  30. Lane RD, Reiman EM, Ahern GL, Schwartz GE, Davidson RJ (1997) Neuroanatomical correlates of happiness, sadness, and disgust. Am J Psychiatry 154:926–933CrossRefPubMedGoogle Scholar
  31. Lane RD, Chua PM, Dolan RJ (1999) Common effects of emotional valence, arousal and attention on neural activation during visual processing of pictures. Neuropsychologia 37:989–997CrossRefPubMedGoogle Scholar
  32. Lang PJ, Bradley MM, Fitzsimmons JR, Cuthbert BN, Scott JD, Moulder B, Nangia V (1998) Emotional arousal and activation of the visual cortex: an fMRI analysis. Psychophysiology 35:199–210CrossRefPubMedGoogle Scholar
  33. Liotti M, Mayberg HS, Brannan SK, McGinnis S, Jerabek P, Fox PT (2000) Differential limbic–cortical correlates of sadness and anxiety in healthy subjects: implications for affective disorders. Biol Psychiatry 48:30–42CrossRefPubMedGoogle Scholar
  34. Liotti M, Brannan S, Egan G et al (2001) Brain responses associated with consciousness of breathlessness (air hunger). Proc Natl Acad Sci USA 98:2035–2040. doi:10.1073/pnas.98.4.2035 CrossRefPubMedPubMedCentralGoogle Scholar
  35. Loge JH, Ekeberg O, Kaasa S (1998) Fatigue in the general Norwegian population: normative data and associations. J Psychosom Res 45:53–65CrossRefPubMedGoogle Scholar
  36. Lopes da Silva F (1991) Neural mechanisms underlying brain waves: from neural membranes to networks. Electroencephalogr Clin Neurophysiol 79:81–93CrossRefPubMedGoogle Scholar
  37. Mataix-Cols D, Wooderson S, Lawrence N, Brammer MJ, Speckens A, Phillips ML (2004) Distinct neural correlates of washing, checking, and hoarding symptom dimensions in obsessive-compulsive disorder. Arch Gen Psychiatry 61:564–576. doi:10.1001/archpsyc.61.6.564 CrossRefPubMedGoogle Scholar
  38. Mathot S, Schreij D, Theeuwes J (2012) OpenSesame: an open-source, graphical experiment builder for the social sciences. Behav Res Methods 44:314–324. doi:10.3758/s13428-011-0168-7 CrossRefPubMedGoogle Scholar
  39. Neuper C, Pfurtscheller G (2001) Event-related dynamics of cortical rhythms: frequency-specific features and functional correlates. Int J Psychophysiol 43:41–58CrossRefPubMedGoogle Scholar
  40. Oldfield RC (1971) The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia 9:97–113CrossRefPubMedGoogle Scholar
  41. Papadelis C, Poghosyan V, Ioannides AA (2007) Phantom study supports claim of accurate localization from MEG data. Int J Bioelectromagn 9:163–167Google Scholar
  42. Pawlikowska T, Chalder T, Hirsch SR, Wallace P, Wright DJ, Wessely SC (1994) Population based study of fatigue and psychological distress. BMJ 308:763–766CrossRefPubMedPubMedCentralGoogle Scholar
  43. Pelletier M, Bouthillier A, Levesque J et al (2003) Separate neural circuits for primary emotions? Brain activity during self-induced sadness and happiness in professional actors. NeuroReport 14:1111–1116. doi:10.1097/01.wnr.0000075421.59944.69 CrossRefPubMedGoogle Scholar
  44. Pfurtscheller G, Lopes da Silva FH (1999) Event-related EEG/MEG synchronization and desynchronization: basic principles. Clin Neurophysiol 110:1842–1857CrossRefPubMedGoogle Scholar
  45. Phillips ML, Young AW, Scott SK et al (1998) Neural responses to facial and vocal expressions of fear and disgust. Proc Biol Sci 265:1809–1817. doi:10.1098/rspb.1998.0506 CrossRefPubMedPubMedCentralGoogle Scholar
  46. Sekihara K, Nagarajan SS (2008) Adaptive spatial filters for electromagnetic brain imaging. Springer Verlag, BerlinGoogle Scholar
  47. Singer W (1993) Synchronization of cortical activity and its putative role in information processing and learning. Annu Rev Physiol 55:349–374. doi:10.1146/annurev.ph.55.030193.002025 CrossRefPubMedGoogle Scholar
  48. Stam CJ (2010) Use of magnetoencephalography (MEG) to study functional brain networks in neurodegenerative disorders. J Neurol Sci 289:128–134. doi:10.1016/j.jns.2009.08.028 CrossRefPubMedGoogle Scholar
  49. Tanaka M, Watanabe Y (2010) A new hypothesis of chronic fatigue syndrome: co-conditioning theory. Med Hypotheses 75:244–249. doi:10.1016/j.mehy.2010.02.032 CrossRefPubMedGoogle Scholar
  50. Tanaka M, Ishii A, Watanabe Y (2013) Neural correlates of central inhibition during physical fatigue. PLoS ONE 8:e70949. doi:10.1371/journal.pone.0070949 CrossRefPubMedPubMedCentralGoogle Scholar
  51. Taylor SF, Liberzon I, Koeppe RA (2000) The effect of graded aversive stimuli on limbic and visual activation. Neuropsychologia 38:1415–1425CrossRefPubMedGoogle Scholar
  52. van Wijk BC, Fitzgerald TH (2014) Thalamo-cortical cross-frequency coupling detected with MEG. Front Hum Neurosci 8:187. doi:10.3389/fnhum.2014.00187 PubMedPubMedCentralGoogle Scholar
  53. van’t Leven M, Zielhuis GA, van der Meer JW, Verbeek AL, Bleijenberg G (2010) Fatigue and chronic fatigue syndrome-like complaints in the general population. Eur J Public Health 20:251–257. doi:10.1093/eurpub/ckp113 CrossRefGoogle Scholar
  54. Watanabe Y (2007) Preface and mini-review: fatigue science for human health. In: Watanabe Y, Evengård B, Natelson B, Jason L, Kuratsune H (eds) Fatigue science for human health. Springer, New York, pp 5–11Google Scholar
  55. Wicker B, Keysers C, Plailly J, Royet JP, Gallese V, Rizzolatti G (2003) Both of us disgusted in My insula: the common neural basis of seeing and feeling disgust. Neuron 40:655–664CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Akira Ishii
    • 1
  • Masaaki Tanaka
    • 1
  • Yasuyoshi Watanabe
    • 1
    • 2
  1. 1.Department of PhysiologyOsaka City University Graduate School of MedicineOsaka CityJapan
  2. 2.Center for Life Science TechnologiesRIKENKobe CityJapan

Personalised recommendations