Advertisement

Experimental Brain Research

, Volume 234, Issue 8, pp 2391–2402 | Cite as

Deficits in motor abilities for multi-finger force control in hemiparetic stroke survivors

  • Yushin Kim
  • Woo-Sub KimEmail author
  • Kyung Koh
  • BumChul Yoon
  • Diane L. Damiano
  • Jae Kun ShimEmail author
Research Article

Abstract

The ability to control redundant motor effectors is one of hallmarks in human motor control, and the topic has been studied extensively over several decades since the initial inquiries proposed by Nicholi Bernstein. However, our understanding of the influence of stroke on the control of redundant motor systems is very limited. This study aimed to investigate the effect of stroke-related constraints on multi-finger force control abilities in a visuomotor task. Impaired (IH) and less-impaired hands (LH) of 19 hemiparetic stroke survivors and 19 age-matched control subjects were examined. Each hand repeatedly produced isometric forces to match a target force of 5 N shown on a computer screen using all four fingers. The hierarchical variability decomposition (HVD) model was used to separate force-matching errors (motor performance) into task-relevant measures (accuracy, steadiness, and reproducibility). Task-irrelevant sources of variability in individual finger force profiles within and between trials (flexibility and multiformity) were also quantified. The IH in the stroke survivors showed deficits in motor performance attributed mainly to lower accuracy and reproducibility as compared to control hands (p < 0.05). The LH in stroke survivors showed lower reproducibility and both hands in stroke also had higher multiformity than the control hands (p < 0.05). The findings from our HVD model suggest that accuracy, reproducibility, and multiformity were mainly impaired during force-matching task in the stroke survivors. The specific motor deficits identified through the HVD model with the new conceptual framework may be considered as critical factors for scientific investigation on stroke and evidence-based rehabilitation of this population.

Keywords

Stroke Motor activity Fingers Psychomotor performance Nervous system Functional capacity impairment 

Notes

Acknowledgments

We thank Taeyoung Kim, PT, M.Sc. for assistance with data collection. The research was funded in part by National Research Foundation (NRF-2013004812) of Korea and the Translational Research Center for Rehabilitation Robots, Korea National Rehabilitation Center, Ministry of Health & Welfare, Korea (NRCTR-EX15007) and by the Intramural Research Program at the National Institutes of Health (NIH) Clinical Center. This research was also supported by a grant of the Korea Health Technology R&D Project through the Korea Health Industry Development Institute (KHIDI), funded by the Ministry of Health & Welfare, Republic of Korea (HI14C1155).

References

  1. Ada L, Canning CG, Low SL (2003) Stroke patients have selective muscle weakness in shortened range. Brain 126:724–731. doi: 10.1093/brain/awg06 CrossRefPubMedGoogle Scholar
  2. Ansari NN, Naghdi S, Arab TK, Jalaie S (2008) The interrater and intrarater reliability of the Modified Ashworth Scale in the assessment of muscle spasticity: limb and muscle group effect. NeuroRehabilitation 23:231–237PubMedGoogle Scholar
  3. Bagce HF, Saleh S, Adamovich SV, Tunik E (2012) Visuomotor gain distortion alters online motor performance and enhances primary motor cortex excitability in patients with stroke. Neuromodulation 15:361–366. doi: 10.1111/j.1525-1403.2012.00467.x CrossRefPubMedPubMedCentralGoogle Scholar
  4. Bohannon RW (2007) Muscle strength and muscle training after stroke. J Rehabil Med 39:14–20. doi: 10.2340/16501977-0018 CrossRefPubMedGoogle Scholar
  5. Broeks JG, Lankhorst GJ, Rumping K, Prevo AJ (1999) The long-term outcome of arm function after stroke: results of a follow-up study. Disabil Rehabil 21:357–364CrossRefPubMedGoogle Scholar
  6. Butler AJ, Kahn S, Wolf SL, Weiss P (2005) Finger extensor variability in TMS parameters among chronic stroke patients. J Neuroeng Rehabil 2:10. doi: 10.1186/1743-0003-2-10 CrossRefPubMedPubMedCentralGoogle Scholar
  7. Carey JR, Kimberley TJ, Lewis SM, Auerbach EJ, Dorsey L, Rundquist P, Ugurbil K (2002) Analysis of fMRI and finger tracking training in subjects with chronic stroke. Brain 125:773–788CrossRefPubMedGoogle Scholar
  8. Chang SH, Francisco GE, Zhou P, Rymer WZ, Li S (2013) Spasticity, weakness, force variability, and sustained spontaneous motor unit discharges of resting spastic–paretic biceps brachii muscles in chronic stroke. Muscle Nerve 48:85–92. doi: 10.1002/mus.23699 CrossRefPubMedPubMedCentralGoogle Scholar
  9. Duncan PW, Lai SM, Keighley J (2000) Defining post-stroke recovery: implications for design and interpretation of drug trials. Neuropharmacology 39:835–841CrossRefPubMedGoogle Scholar
  10. Folstein MF, Folstein SE, McHugh PR (1975) “Mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res 12:189–198CrossRefPubMedGoogle Scholar
  11. Fugl-Meyer AR, Jaasko L, Leyman I, Olsson S, Steglind S (1975) The post-stroke hemiplegic patient. 1. A method for evaluation of physical performance. Scand J Rehabil Med 7:13–31PubMedGoogle Scholar
  12. Holmstrom L, de Manzano O, Vollmer B, Forsman L, Valero-Cuevas FJ, Ullen F, Forssberg H (2011) Dissociation of brain areas associated with force production and stabilization during manipulation of unstable objects. Exp Brain Res 215:359–367. doi: 10.1007/s00221-011-2903-9 CrossRefPubMedPubMedCentralGoogle Scholar
  13. Kang N, Cauraugh JH (2014) Bimanual force variability and chronic stroke: asymmetrical hand control. PLoS One 9:e101817. doi: 10.1371/journal.pone.0101817 CrossRefPubMedPubMedCentralGoogle Scholar
  14. Kantak SS, Mummidisetty CK, Stinear JW (2012) Primary motor and premotor cortex in implicit sequence learning-evidence for competition between implicit and explicit human motor memory systems. Eur J Neurosci 36:2710–2715. doi: 10.1111/j.1460-9568.2012.08175.x CrossRefPubMedGoogle Scholar
  15. Karol S, Kim YS, Huang J, Kim YH, Koh K, Yoon BC, Shim JK (2011) Multi-finger pressing synergies change with the level of extra degrees of freedom. Exp Brain Res 208:359–367. doi: 10.1007/s00221-010-2486-x CrossRefPubMedGoogle Scholar
  16. Kim Y, Kim WS, Yoon B (2014) The effect of stroke on motor selectivity for force control in single- and multi-finger force production tasks. NeuroRehabilitation 34:429–435. doi: 10.3233/Nre-141050 PubMedGoogle Scholar
  17. Kim Y, Kim WS, Shim JK, Suh DW, Kim T, Yoon B (2015) Difference of motor overflow depending on the impaired or unimpaired hand in stroke patients. Hum Mov Sci 39:154–162. doi: 10.1016/j.humov.2014.11.007 CrossRefPubMedGoogle Scholar
  18. Koh K, Kwon HJ, Yoon BC et al (2015) The role of tactile sensation in online and offline hierarchical control of multi-finger force synergy. Exp Brain Res 233:2539–2548. doi: 10.1007/s00221-015-4325-6 CrossRefPubMedGoogle Scholar
  19. Kurillo G, Zupan A, Bajd T (2004) Force tracking system for the assessment of grip force control in patients with neuromuscular diseases. Clin Biomech 19:1014–1021. doi: 10.1016/j.clinbiomech.2004.07.003 CrossRefGoogle Scholar
  20. Latash ML (2010) Motor synergies and the equilibrium-point hypothesis. Mot Control 14:294–322Google Scholar
  21. Latash ML (2012) The bliss (not the problem) of motor abundance (not redundancy). Exp Brain Res 217:1–5. doi: 10.1007/s00221-012-3000-4 CrossRefPubMedPubMedCentralGoogle Scholar
  22. Latash ML, Shim JK, Shinohara M, Zatsiorsky VM (2006) Changes in finger coordination and hand function with advanced age. In: Latash ML, Lestienne F (eds) Motor control and learning. Springer, New York, NY, pp 141–159CrossRefGoogle Scholar
  23. Latash ML, Levin MF, Scholz JP, Schoner G (2010) Motor control theories and their applications. Med Lith 46:382–392Google Scholar
  24. Li S, Latash ML, Yue GH, Siemionow V, Sahgal V (2003) The effects of stroke and age on finger interaction in multi-finger force production tasks. Clin Neurophysiol 114:1646–1655. doi: 10.1016/S1388-2457(03)00164-0 CrossRefPubMedGoogle Scholar
  25. Lindberg PG, Roche N, Robertson J, Roby-Brami A, Bussel B, Maier MA (2012) Affected and unaffected quantitative aspects of grip force control in hemiparetic patients after stroke. Brain Res 1452:96–107. doi: 10.1016/j.brainres.2012.03.007 CrossRefPubMedGoogle Scholar
  26. Lodha N, Naik SK, Coombes SA, Cauraugh JH (2010) Force control and degree of motor impairments in chronic stroke. Clin Neurophysiol 121:1952–1961. doi: 10.1016/j.clinph.2010.04.005 CrossRefPubMedGoogle Scholar
  27. Lodha N, Coombes SA, Cauraugh JH (2012) Bimanual isometric force control: asymmetry and coordination evidence post stroke. Clin Neurophysiol 123:787–795. doi: 10.1016/j.clinph.2011.08.014 CrossRefPubMedGoogle Scholar
  28. Louis ED, Gillman A, Boschung S, Hess CW, Yu Q, Pullman SL (2012) High width variability during spiral drawing: further evidence of cerebellar dysfunction in essential tremor. Cerebellum 11:872–879. doi: 10.1007/s12311-011-0352-4 CrossRefPubMedGoogle Scholar
  29. Lukacs M (2005) Electrophysiological signs of changes in motor units after ischaemic stroke. Clin Neurophysiol 116:1566–1570. doi: 10.1016/j.clinph.2005.04.005 CrossRefPubMedGoogle Scholar
  30. Massy-Westropp NM, Gill TK, Taylor AW, Bohannon RW, Hill CL (2011) Hand Grip Strength: age and gender stratified normative data in a population-based study. BMC Res Notes 4:127. doi: 10.1186/1756-0500-4-127 CrossRefPubMedPubMedCentralGoogle Scholar
  31. Mathiowetz V, Volland G, Kashman N, Weber K (1985) Adult norms for the Box and Block Test of manual dexterity. Am J Occup Ther 39:386–391CrossRefPubMedGoogle Scholar
  32. Matsuoka Y, Brewer BR, Klatzky RL (2007) Using visual feedback distortion to alter coordinated pinching patterns for robotic rehabilitation. J Neuroeng Rehabil 4:17. doi: 10.1186/1743-0003-4-17 CrossRefPubMedPubMedCentralGoogle Scholar
  33. Miller LC, Dewald JP (2012) Involuntary paretic wrist/finger flexion forces and EMG increase with shoulder abduction load in individuals with chronic stroke. Clin Neurophysiol 123:1216–1225. doi: 10.1016/j.clinph.2012.01.009 CrossRefPubMedPubMedCentralGoogle Scholar
  34. Naik SK, Patten C, Lodha N, Coombes SA, Cauraugh JH (2011) Force control deficits in chronic stroke: grip formation and release phases. Exp Brain Res 211:1–15. doi: 10.1007/s00221-011-2637-8 CrossRefPubMedGoogle Scholar
  35. Newell KM, Carlton LG (1988) Force variability in isometric responses. J Exp Psychol Hum Percept Perform 14:37–44CrossRefPubMedGoogle Scholar
  36. Oliveira MA, Rodrigues AM, Caballero RM, Petersen RD, Shim JK (2008) Strength and isometric torque control in individuals with Parkinson’s disease. Exp Brain Res 184:445–450. doi: 10.1007/s00221-007-1212-9 CrossRefPubMedGoogle Scholar
  37. Platz T, Pinkowski C, van Wijck F, Kim IH, di Bella P, Johnson G (2005) Reliability and validity of arm function assessment with standardized guidelines for the Fugl-Meyer Test, Action Research Arm Test and Box and Block Test: a multicentre study. Clin Rehabil 19:404–411CrossRefPubMedGoogle Scholar
  38. Raghavan P (2007) The nature of hand motor impairment after stroke and its treatment. Curr Treat Options Cardiovasc Med 9:221–228CrossRefPubMedGoogle Scholar
  39. Reisman DS, Scholz JP (2003) Aspects of joint coordination are preserved during pointing in persons with post-stroke hemiparesis. Brain 126:2510–2527. doi: 10.1093/brain/awg246 CrossRefPubMedGoogle Scholar
  40. Reisman DS, Scholz JP (2006) Workspace location influences joint coordination during reaching in post-stroke hemiparesis. Exp Brain Res 170:265–276. doi: 10.1007/s00221-005-0209-5 CrossRefPubMedGoogle Scholar
  41. Scholz JP, Schoner G (1999) The uncontrolled manifold concept: identifying control variables for a functional task. Exp Brain Res 126:289–306CrossRefPubMedGoogle Scholar
  42. Scholz JP, Reisman D, Schoner G (2001) Effects of varying task constraints on solutions to joint coordination in a sit-to-stand task. Exp Brain Res 141:485–500. doi: 10.1007/s002210100878 CrossRefPubMedGoogle Scholar
  43. Scholz JP, Danion F, Latash ML, Schoner G (2002) Understanding finger coordination through analysis of the structure of force variability. Biol Cybern 86:29–39. doi: 10.1007/s004220100279 CrossRefPubMedGoogle Scholar
  44. Shim JK, Latash ML, Zatsiorsky VM (2003) The human central nervous system needs time to organize task-specific covariation of finger forces. Neurosci Lett 353:72–74. doi: 10.1016/j.neulet.2003.08.079 CrossRefPubMedGoogle Scholar
  45. Shim JK, Lay BS, Zatsiorsky VM, Latash ML (2004) Age-related changes in finger coordination in static prehension tasks. J Appl Physiol 97:213–224. doi: 10.1152/japplphysiol.00045.2004 CrossRefPubMedPubMedCentralGoogle Scholar
  46. Shim JK, Olafsdottir H, Zatsiorsky VM, Latash ML (2005) The emergence and disappearance of multi-digit synergies during force-production tasks. Exp Brain Res 164:260–270. doi: 10.1007/s00221-005-2248-3 CrossRefPubMedPubMedCentralGoogle Scholar
  47. Todorov E, Jordan MI (2002) Optimal feedback control as a theory of motor coordination. Nat Neurosci 5:1226–1235. doi: 10.1038/nn963 CrossRefPubMedGoogle Scholar
  48. Vaillancourt DE, Thulborn KR, Corcos DM (2003) Neural basis for the processes that underlie visually guided and internally guided force control in humans. J Neurophysiol 90:3330–3340. doi: 10.1152/jn.00394.2003 CrossRefPubMedGoogle Scholar
  49. Vaillancourt DE, Mayka MA, Corcos DM (2006) Intermittent visuomotor processing in the human cerebellum, parietal cortex, and premotor cortex. J Neurophysiol 95:922–931. doi: 10.1152/jn.00718.2005 CrossRefPubMedGoogle Scholar
  50. Verrel J (2010) Distributional properties and variance-stabilizing transformations for measures of uncontrolled manifold effects. J Neurosci Methods 191:166–170. doi: 10.1016/j.jneumeth.2010.06.016 CrossRefPubMedGoogle Scholar
  51. Williams LS, Weinberger M, Harris LE, Clark DO, Biller J (1999) Development of a stroke-specific quality of life scale. Stroke 30:1362–1369CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Functional Applied Biomechanics Section, Department of Rehabilitation MedicineNational Institutes of HealthBethesdaUSA
  2. 2.Department of Rehabilitation MedicineKorea University Guro HospitalSeoulSouth Korea
  3. 3.Department of KinesiologyUniversity of MarylandCollege ParkUSA
  4. 4.Department of Physical TherapyKorea UniversitySeoulSouth Korea
  5. 5.Department of Mechanical Engineering, College of EngineeringKyung Hee UniversityYong-InSouth Korea

Personalised recommendations