Experimental Brain Research

, Volume 234, Issue 5, pp 1293–1305 | Cite as

Neural correlates of tactile perception during pre-, peri-, and post-movement

  • Georgiana Juravle
  • Tobias Heed
  • Charles Spence
  • Brigitte Röder
Research Article


Tactile information is differentially processed over the various phases of goal-directed movements. Here, event-related potentials (ERPs) were used to investigate the neural correlates of tactile and visual information processing during movement. Participants performed goal-directed reaches for an object placed centrally on the table in front of them. Tactile and visual stimulation (100 ms) was presented in separate trials during the different phases of the movement (i.e. preparation, execution, and post-movement). These stimuli were independently delivered to either the moving or resting hand. In a control condition, the participants only performed the movement, while omission (i.e. movement-only) ERPs were recorded. Participants were instructed to ignore the presence or absence of any sensory events and to concentrate solely on the execution of the movement. Enhanced ERPs were observed 80–200 ms after tactile stimulation, as well as 100–250 ms after visual stimulation: These modulations were greatest during the execution of the goal-directed movement, and they were effector based (i.e. significantly more negative for stimuli presented to the moving hand). Furthermore, ERPs revealed enhanced sensory processing during goal-directed movements for visual stimuli as well. Such enhanced processing of both tactile and visual information during the execution phase suggests that incoming sensory information is continuously monitored for a potential adjustment of the current motor plan. Furthermore, the results reported here also highlight a tight coupling between spatial attention and the execution of motor actions.


Tactile Visual Event-related potentials Goal-directed movement 



The authors would like to thank Dagmar Tödter and Sybille Röper for their kind help with data collection. At the time of conducting the study, GJ was supported by a DAAD Postgraduate Visit Grant. This study was supported by a grant from the German Research Foundation (SFB 936, project B1) to TH and BR. CS is supported by the Rethinking the Senses grant from the AHRC (UK) (AH/L007053/1).


  1. Armatas CA, Summers JJ, Bradshaw JL (1994) Mirror movements in normal adult subjects. J Clin Exp Neuropsychol 16:405–413. doi: 10.1080/01688639408402651 CrossRefPubMedGoogle Scholar
  2. Augurelle A-S, Smith AM, Lejeune T, Thonnard J-L (2003) Importance of cutaneous feedback in maintaining a secure grip during manipulation of hand-held objects. J Neurophysiol 89:665–671. doi: 10.1152/jn.00249.2002 CrossRefPubMedGoogle Scholar
  3. Baldauf D, Deubel H (2008) Properties of attentional selection during the preparation of sequential saccades. Exp Brain Res 184:411–425. doi: 10.1007/s00221-007-1114-x CrossRefPubMedGoogle Scholar
  4. Baldauf D, Deubel H (2009) Attentional selection of multiple goal positions before rapid hand movement sequences: an event-related potential study. J Cogn Neurosci 21:18–29. doi: 10.1162/jocn.2008.21021 CrossRefPubMedGoogle Scholar
  5. Baldauf D, Wolf M, Deubel H (2006) Deployment of visual attention before sequences of goal-directed hand movements. Visi Res 46:4355–4374. doi: 10.1016/j.visres.2006.08.021 CrossRefGoogle Scholar
  6. Bays PM, Wolpert DM (2007) Computational principles of sensorimotor control that minimize uncertainty and variability. J Physiol 578:387–396. doi: 10.1113/jphysiol.2006.120121 CrossRefPubMedPubMedCentralGoogle Scholar
  7. Bosbach S, Cole J, Prinz W, Knoblich G (2005) Inferring another’s expectation from action: the role of peripheral sensation. Nat Neurosci 8:1295–1297. doi: 10.1038/nn1535 CrossRefPubMedGoogle Scholar
  8. Brochier T, Boudreau MJ, Paré M, Smith AM (1999) The effects of muscimol inactivation of small regions of motor and somatosensory cortex on independent finger movements and force control in the precision grip. Exp Brain Res 128:31–40. doi: 10.1007/s002210050814 CrossRefPubMedGoogle Scholar
  9. Brozzoli C, Pavani F, Urquizar C et al (2009) Grasping actions remap peripersonal space. NeuroReport 20:913–917. doi: 10.1097/WNR.0b013e32832c0b9b CrossRefPubMedGoogle Scholar
  10. Chapman CE, Beauchamp E (2006) Differential controls over tactile detection in humans by motor commands and peripheral reafference. J Neurophysiol 96:1664–1675. doi: 10.1152/jn.00214.2006 CrossRefPubMedGoogle Scholar
  11. Chen J-T, Lin Y-Y, Shan D-E et al (2005) Effect of transcranial magnetic stimulation on bimanual movements. J Neurophysiol 93:53–63. doi: 10.1152/jn.01063.2003 CrossRefPubMedGoogle Scholar
  12. Collins T, Heed T, Röder B (2010) Visual target selection and motor planning define attentional enhancement at perceptual processing stages. Front Hum Neurosci 4:14. doi: 10.3389/neuro.09.014.2010 CrossRefPubMedPubMedCentralGoogle Scholar
  13. Delorme A, Makeig S (2004) EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J Neurosci Method 134(1):9–21 CrossRefGoogle Scholar
  14. Desmedt JE, Tomberg C (1985) Mapping early somatosensory evoked potentials in selective attention: critical evaluation of control conditions used for titrating by difference the cognitive P30, P40, P100 and N140. Electroencephalogr Clin Neurophysiol 74:321–346CrossRefGoogle Scholar
  15. Desmurget M, Grafton S (2000) Forward modeling allows feedback control for fast reaching movements. Trends Cogn Sci 4:423–431. doi: 10.1016/S1364-6613(00)01537-0 CrossRefPubMedGoogle Scholar
  16. Deubel H, Schneider W (1996) Saccade target selection and object recognition: evidence for a common attentional mechanism. Vis Res 36:1827–1837. doi: 10.1016/0042-6989(95)00294-4 CrossRefPubMedGoogle Scholar
  17. Deubel H, Schneider W, Paprotta I (1998) Selective dorsal and ventral processing: evidence for a common attentional mechanism in reaching and perception. Vis cogn 5:81–107. doi: 10.1080/713756776 CrossRefGoogle Scholar
  18. Eimer M, Forster B, Fieger A, Harbich S (2004) Effects of hand posture on preparatory control processes and sensory modulations in tactile-spatial attention. Clin Neurophysiol 115:596–608. doi: 10.1016/j.clinph.2003.10.015 CrossRefPubMedGoogle Scholar
  19. Eimer M, Forster B, Prabhu G (2005) Covert manual response preparation triggers attentional shifts: ERP evidence for the premotor theory of attention. Neuropsychologia 43:957–966. doi: 10.1016/j.neuropsychologia.2004.08.011 CrossRefPubMedPubMedCentralGoogle Scholar
  20. Forster B, Eimer M (2005) Covert attention in touch: behavioral and ERP evidence for costs and benefits. Psychophysiology 42:171–179. doi: 10.1111/j.1469-8986.2005.00268.x CrossRefPubMedGoogle Scholar
  21. Forster B, Eimer M (2007) Covert unimanual response preparation triggers attention shifts to effectors rather than goal locations. Neurosci Lett 419:142–146. doi: 10.1016/j.neulet.2007.04.027 CrossRefPubMedGoogle Scholar
  22. Gallace A, Zeeden S, Röder B, Spence C (2010) Lost in the move? Secondary task performance impairs tactile change detection on the body. Conscious Cogn 19:215–229. doi: 10.1016/j.concog.2009.07.003 CrossRefPubMedGoogle Scholar
  23. Gherri E, Eimer M (2008) Links between eye movement preparation and the attentional processing of tactile events: an event-related brain potential study. Clin Neurophysiol 119:2587–2597. doi: 10.1016/j.clinph.2008.07.214 CrossRefPubMedPubMedCentralGoogle Scholar
  24. Gherri E, Eimer M (2010) Manual response preparation disrupts spatial attention: an electrophysiological investigation of links between action and attention. Neuropsychologia 48:961–969. doi: 10.1016/j.neuropsychologia.2009.11.017 CrossRefPubMedPubMedCentralGoogle Scholar
  25. Gherri E, Forster B (2012) The orienting of attention during eye and hand movements: ERP evidence for similar frame of reference but different spatially specific modulations of tactile processing. Biol Psychol 91:172–184. doi: 10.1016/j.biopsycho.2012.06.007 CrossRefPubMedGoogle Scholar
  26. Gherri E, Van Velzen J, Eimer M (2007) Dissociating effector and movement direction selection during the preparation of manual reaching movements: evidence from lateralized ERP components. Clin Neurophysiol 118:2031–2049. doi: 10.1016/j.clinph.2007.06.003 CrossRefPubMedPubMedCentralGoogle Scholar
  27. Gherri E, Van Velzen J, Eimer M (2009) The instructed context of a motor task modulates covert response preparation and shifts of spatial attention. Psychophysiology 46:655–667. doi: 10.1111/j.1469-8986.2009.00800.x CrossRefPubMedPubMedCentralGoogle Scholar
  28. Gillmeister H, Forster B (2012) Hands behind your back: effects of arm posture on tactile attention in the space behind the body. Exp Brain Res 216:489–497. doi: 10.1007/s00221-011-2953-z CrossRefPubMedGoogle Scholar
  29. Heed T, Röder B (2010) Common anatomical and external coding for hands and feet in tactile attention: evidence from event-related potentials. J Cogn Neurosci 22:184–202. doi: 10.1162/jocn.2008.21168 CrossRefPubMedGoogle Scholar
  30. Heinze HJ, Luck SJ, Mangun GR, Hillyard SA (1990) Visual event-related potentials index focused attention within bilateral stimulus arrays. I. Evidence for early selection. Electroencephalogr Clin Neurophysiol 75:511–527. doi: 10.1016/0013-4694(90)90138-A CrossRefPubMedGoogle Scholar
  31. Jackson GM, German K, Peacock K (2002) Functional coupling between the limbs during bimanual reach-to-grasp movements. Hum Mov Sci 21:5–21. doi: 10.1016/S0167-9457(02)00118-5 CrossRefGoogle Scholar
  32. James W (1890) The principles of psychology. Holt, New YorkCrossRefGoogle Scholar
  33. Jeannerod M (1994) The representing brain: neural correlates of motor intention and imagery. Behav Brain Sci 17:187–202. doi: 10.1017/S0140525X00034166 CrossRefGoogle Scholar
  34. Juravle G, Deubel H (2009) Action preparation enhances the processing of tactile targets. Exp Brain Res 198:301–311. doi: 10.1007/s00221-009-1819-0 CrossRefPubMedGoogle Scholar
  35. Juravle G, Deubel H, Tan HZ, Spence C (2010) Changes in tactile sensitivity over the time-course of a goal-directed movement. Behav Brain Res 208:391–401. doi: 10.1016/j.bbr.2009.12.009 CrossRefPubMedGoogle Scholar
  36. Juravle G, Deubel H, Spence C (2011) Attention and suppression affect tactile perception in reach-to-grasp movements. Acta Psychol (Amst) 138:302–310. doi: 10.1016/j.actpsy.2011.08.001 CrossRefGoogle Scholar
  37. Juravle G, McGlone F, Spence C (2013) Context-dependent changes in tactile perception during movement execution. Front Psychol 4:913. doi: 10.3389/fpsyg.2013.00913 CrossRefPubMedPubMedCentralGoogle Scholar
  38. Kelso J, Southard D, Goodman D (1979) On the nature of human interlimb coordination. Science 203:1029–1031. doi: 10.1126/science.424729 CrossRefPubMedGoogle Scholar
  39. Konagaya Y, Mano Y, Konagaya M (1990) Magnetic stimulation study in mirror movements. J Neurol 237:107–109. doi: 10.1007/BF00314672 CrossRefPubMedGoogle Scholar
  40. Kühn S, Nenchev I, Haggard P et al (2011) Whodunnit? Electrophysiological correlates of agency judgements. PLoS One 6:e28657. doi: 10.1371/journal.pone.0028657 CrossRefPubMedPubMedCentralGoogle Scholar
  41. Ley P, Röder B (2014) Dissociating effects of movement preparation and spatial attention on visual processing: evidence from event-related potentials. Multisens Res 27:139–160. doi: 10.1163/22134808-00002445 CrossRefPubMedGoogle Scholar
  42. Luck SJ (2005) An introduction to the event-related potential technique. MIT Press, CambridgeGoogle Scholar
  43. Mangun GR, Hillyard SA (1988) Spatial gradients of visual attention: behavioral and electrophysiological evidence. Electroencephalogr Clin Neurophysiol 70:417–428. doi: 10.1016/0013-4694(88)90019-3 CrossRefPubMedGoogle Scholar
  44. Monzée J, Lamarre Y, Smith AM (2003) The effects of digital anesthesia on force control using a precision grip. J Neurophysiol 89:672–683. doi: 10.1152/jn.00434.2001 CrossRefPubMedGoogle Scholar
  45. Nowak DA, Hermsdorfer J, Glasauer S et al (2001) The effects of digital anaesthesia on predictive grip force adjustments during vertical movements of a grasped object. Eur J Neurosci 14:756–762. doi: 10.1046/j.0953-816x.2001.01697.x CrossRefPubMedGoogle Scholar
  46. Nowak DA, Glasauer CAS, Hermsdörfer J (2003) Grip force efficiency in long-term deprivation of somatosensory feedback. NeuroReport 14:1803–1807. doi: 10.1097/01.wnr.0000087506.22247 CrossRefPubMedGoogle Scholar
  47. Oostenveld R, Praamstra P (2001) The five percent electrode system for high-resolution EEG and ERP measurements. Clin Neurophysiol 112:713–719. doi: 10.1016/S1388-2457(00)00527-7 CrossRefPubMedGoogle Scholar
  48. Rizzolatti G, Craighero L (2010) Premotor theory of spatial attention. Scholarpedia 5(1):6311CrossRefGoogle Scholar
  49. Rizzolatti G, Riggio L, Sheliga B (1994) Space and selective attention. In: Umiltà C, Moscovitch M (eds) Atten. Perform. XV. MIT Press, Cambridge, pp 231–265Google Scholar
  50. Röder B, Rösler F, Hennighausen E, Näcker F (1996) Event-related potentials during auditory and somatosensory discrimination in sighted and blind human subjects. Cogn Brain Res 4:77–93. doi: 10.1016/0926-6410(96)00024-9 CrossRefGoogle Scholar
  51. Rorden C, Greene K, Sasine GM, Baylis GC (2002) Enhanced tactile performance at the destination of an upcoming saccade. Curr Biol 12:1429–1434. doi: 10.1016/S0960-9822(02)01039-4 CrossRefPubMedGoogle Scholar
  52. Rossini PM, Babiloni C, Babiloni F et al (1999) “Gating” of human short-latency somatosensory evoked cortical responses during execution of movement. A high resolution electroencephalography study. Brain Res 843:161–170. doi: 10.1016/S0006-8993(99)01716-3 CrossRefPubMedGoogle Scholar
  53. Spence C (2012) Attention. In: Ramachandran VS (ed) Encycl. Hum. Behav., 2nd edn. Elsevier, Oxford, pp 211–217CrossRefGoogle Scholar
  54. Thonnard J-L, Detrembleur C, Van den Bergh PYK (1997) Assessment of hand function in a patient with chronic sensory demyelinating neuropathy. Neurology 49:253–257. doi: 10.1212/WNL.49.1.253 CrossRefPubMedGoogle Scholar
  55. Timm J, Sanmiguel I, Keil J et al (2014) Motor intention determines sensory attenuation of brain responses to self-initiated sounds. J Cogn Neurosci 26:1481–1489. doi: 10.1162/jocn_a_00552 CrossRefPubMedGoogle Scholar
  56. Urbano A, Babiloni C, Onorati P et al (1998) Responses of human primary sensorimotor and supplementary motor areas to internally triggered unilateral and simultaneous bilateral one-digit movements. A high-resolution EEG study. Eur J Neurosci 10:765–770. doi: 10.1046/j.1460-9568.1998.00072.x CrossRefPubMedGoogle Scholar
  57. van der Lubbe RH, Wauschkuhn B, Wascher E et al (2000) Lateralized EEG components with direction information for the preparation of saccades versus finger movements. Exp Brain Res 132:163–178CrossRefPubMedGoogle Scholar
  58. Van Der Lubbe RHJ, Neggers SFW, Verleger R, Kenemans JL (2006) Spatiotemporal overlap between brain activation related to saccade preparation and attentional orienting. Brain Res 1072:133–152. doi: 10.1016/j.brainres.2005.11.087 CrossRefPubMedGoogle Scholar
  59. van Elk M, van Schie HT, Neggers SFW, Bekkering H (2010) Neural and temporal dynamics underlying visual selection for action. J Neurophysiol 104:972–983. doi: 10.1152/jn.01079.2009 CrossRefPubMedGoogle Scholar
  60. van Velzen J, Forster B, Eimer M (2002) Temporal dynamics of lateralized ERP components elicited during endogenous attentional shifts to relevant tactile events. Psychophysiology 39:874–878. doi: 10.1017/S0048577202020140 CrossRefPubMedGoogle Scholar
  61. Wolpert DM, Flanagan JR (2009) Forward models. In: Bayne T, Cleermans A, Wilken P (eds) Oxford companion to Consciousness. Oxford University Press, Oxford, pp 294–296Google Scholar
  62. Wolpert DM, Ghahramani Z, Jordan MI (1995) An internal model for sensorimotor integration. Science 269:1880–1882. doi: 10.1126/science.7569931 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Georgiana Juravle
    • 1
    • 2
    • 3
  • Tobias Heed
    • 1
  • Charles Spence
    • 2
  • Brigitte Röder
    • 1
  1. 1.Biological Psychology and Neuropsychology, Faculty of Psychology and Movement ScienceUniversity of HamburgHamburgGermany
  2. 2.Crossmodal Research Laboratory, Department of Experimental PsychologyOxford UniversityOxfordUK
  3. 3.Department of Systems NeuroscienceUniversity Medical Center Hamburg-EppendorfHamburgGermany

Personalised recommendations