Experimental Brain Research

, Volume 234, Issue 6, pp 1757–1767 | Cite as

Coordination of muscle torques stabilizes upright standing posture: an UCM analysis

  • Eunse Park
  • Hendrik Reimann
  • Gregor Schöner
Research Article


The control of upright stance is commonly explained on the basis of the single inverted pendulum model (ankle strategy) or the double inverted pendulum model (combination of ankle and hip strategy). Kinematic analysis using the uncontrolled manifold (UCM) approach suggests, however, that stability in upright standing results from coordinated movement of multiple joints. This is based on evidence that postural sway induces more variance in joint configurations that leave the body position in space invariant than in joint configurations that move the body in space. But does this UCM structure of kinematic variance truly reflect coordination at the level of the neural control strategy or could it result from passive biomechanical factors? To address this question, we applied the UCM approach at the level of muscle torques rather than joint angles. Participants stood on the floor or on a narrow base of support. We estimated torques at the ankle, knee, and hip joints using a model of the body dynamics. We then partitioned the joint torques into contributions from net, motion-dependent, gravitational, and generalized muscle torques. A UCM analysis of the structure of variance of the muscle torque revealed that postural sway induced substantially more variance in directions in muscle torque space that leave the Center of Mass (COM) force invariant than in directions that affect the force acting on the COM. This difference decreased when we decorrelated the muscle torque data by randomizing across time. Our findings show that the UCM structure of variance exists at the level of muscle torques and is thus not merely a by-product of biomechanical coupling. Because muscle torques reflect neural control signals more directly than joint angles do, our results suggest that the control strategy for upright stance involves the task-specific coordination of multiple degrees of freedom.


Posture Standing Muscle torques Uncontrolled manifold analysis 



We thank Darcy Reisman for useful discussions and corrections. We also thank John P. Scholz (R.I.P.) for his effort and mentoring for the very early stage of this manuscript. This project was supported by the National Science Foundation Grant #0957920.

Supplementary material

221_2016_4576_MOESM1_ESM.pdf (167 kb)
Supplementary material 1 (PDF 166 kb)
221_2016_4576_MOESM2_ESM.pdf (26 kb)
Supplementary material 2 (PDF 25 kb)


  1. Creath R, Kiemel T, Horak F, Peterka R, Jeka J (2005) A unified view of quiet and perturbed stance: simultaneous co-existing excitable modes. Neurosci Lett 377(2):75–80. doi: 10.1016/j.neulet.2004.11.071 CrossRefPubMedGoogle Scholar
  2. Danna-Dos-Santos A, Slomka K, Zatsiorsky VM, Latash ML (2007) Muscle modes and synergies during voluntary body sway. Exp Brain Res 179(4):533–550. doi: 10.1007/s00221-006-0812-0 CrossRefPubMedGoogle Scholar
  3. de Freitas SM, Scholz JP (2010) A comparison of methods for identifying the Jacobian for uncontrolled manifold variance analysis. J Biomech 43(4):775–777. doi: 10.1016/j.jbiomech.2009.10.033 CrossRefPubMedGoogle Scholar
  4. de Looze MP, Kingma I, Bussmann JB, Toussaint HM (1992) Validation of a dynamic linked segment model to calculate joint moments in lifting. Clin Biomech 7(3):161–169. doi: 10.1016/0268-0033(92)90031-X CrossRefGoogle Scholar
  5. Galloway JC, Koshland GF (2002) General coordination of shoulder, elbow and wrist dynamics during multijoint arm movements. Exp Brain Res 142(2):163–180. doi: 10.1007/s002210100882 CrossRefPubMedGoogle Scholar
  6. Gera G, Freitas S, Latash M, Monahan K, Schoner G, Scholz J (2010) Motor abundance contributes to resolving multiple kinematic task constraints. Mot Control 14(1):83–115Google Scholar
  7. Horak FB, Nashner LM, Diener HC (1990) Postural strategies associated with somatosensory and vestibular loss. Exp Brain Res 82(1):167–177CrossRefPubMedGoogle Scholar
  8. Hsu WL, Scholz JP (2011) Motor abundance supports multitasking while standing. Hum Mov Sci. doi: 10.1016/j.humov.2011.07.017 PubMedPubMedCentralGoogle Scholar
  9. Hsu WL, Scholz JP, Schoner G, Jeka JJ, Kiemel T (2007) Control and estimation of posture during quiet stance depends on multijoint coordination. J Neurophysiol 97(4):3024–3035. doi: 10.1152/jn.01142.2006 CrossRefPubMedGoogle Scholar
  10. Hsu WL, Lin KH, Yang RS, Cheng CH (2014) Use of motor abundance in old adults in the regulation of a narrow-based stance. Eur J Appl Physiol 114(2):261–271. doi: 10.1007/s00421-013-2768-7 CrossRefPubMedGoogle Scholar
  11. Jeka J, Oie K, Schoner G, Dijkstra T, Henson E (1998) Position and velocity coupling of postural sway to somatosensory drive. J Neurophysiol 79(4):1661–1674PubMedGoogle Scholar
  12. Khatib O (1987) A unified approach for motion and force control of robot manipulators—the operational space formulation. IEEE J Robot Autom 3(1):43–53CrossRefGoogle Scholar
  13. Khatib O (1995) Internal properties in robotic manipulation: an object-level framework. Int J Robot Res 14(1):19CrossRefGoogle Scholar
  14. Klous M, Danna-dos-Santos A, Latash ML (2010) Multi-muscle synergies in a dual postural task: evidence for the principle of superposition. Exp Brain Res 202(2):457–471. doi: 10.1007/s00221-009-2153-2 CrossRefPubMedPubMedCentralGoogle Scholar
  15. Krishnamoorthy V, Goodman S, Zatsiorsky V, Latash ML (2003) Muscle synergies during shifts of the center of pressure by standing persons: identification of muscle modes. Biol Cybern 89(2):152–161. doi: 10.1007/s00422-003-0419-5 CrossRefPubMedGoogle Scholar
  16. Krishnamoorthy V, Latash ML, Scholz JP, Zatsiorsky VM (2004) Muscle modes during shifts of the center of pressure by standing persons: effect of instability and additional support. Exp Brain Res 157(1):18–31. doi: 10.1007/s00221-003-1812-y CrossRefPubMedGoogle Scholar
  17. Krishnamoorthy V, Yang JF, Scholz JP (2005) Joint coordination during quiet stance: effects of vision. Exp Brain Res 164(1):1–17. doi: 10.1007/s00221-004-2205-6 CrossRefPubMedGoogle Scholar
  18. Krishnamoorthy V, Scholz JP, Latash ML (2007) The use of flexible arm muscle synergies to perform an isometric stabilization task. Clin Neurophysiol 118(3):525–537. doi: 10.1016/j.clinph.2006.11.014 CrossRefPubMedPubMedCentralGoogle Scholar
  19. Latash M (2008) Neurophysiological basis of movement, 2nd edn. Human Kinetics, ChampaignGoogle Scholar
  20. Loram ID, Lakie M (2002) Human balancing of an inverted pendulum: position control by small, ballistic-like, throw and catch movements. J Physiol 540(Pt 3):1111–1124CrossRefPubMedPubMedCentralGoogle Scholar
  21. Martin TA, Norris SA, Greger BE, Thach WT (2002) Dynamic coordination of body parts during prism adaptation. J Neurophysiol 88(4):1685–1694PubMedGoogle Scholar
  22. McCollum G, Leen TK (1989) Form and exploration of mechanical stability limits in erect stance. J Mot Behav 21(3):225–244CrossRefPubMedGoogle Scholar
  23. Muller H, Sternad D (2003) A randomization method for the calculation of covariation in multiple nonlinear relations: illustrated with the example of goal-directed movements. Biol Cybern 89(1):22–33. doi: 10.1007/s00422-003-0399-5 PubMedGoogle Scholar
  24. Murray RM, Li Z, Sastry SS (1994) A mathematical introduction to robotic manipulation. CRC Press, Boca RatonGoogle Scholar
  25. Park S, Horak FB, Kuo AD (2004) Postural feedback responses scale with biomechanical constraints in human standing. Exp Brain Res 154(4):417–427. doi: 10.1007/s00221-003-1674-3 CrossRefPubMedGoogle Scholar
  26. Park E, Schoner G, Scholz JP (2012) Functional synergies underlying control of upright posture during changes in head orientation. PLoS One 7(8):e41583. doi: 10.1371/journal.pone.0041583 CrossRefPubMedPubMedCentralGoogle Scholar
  27. Reisman DS, Scholz JP, Schoner G (2002) Coordination underlying the control of whole body momentum during sit-to-stand. Gait Posture 15(1):45–55CrossRefPubMedGoogle Scholar
  28. Scholz JP, Schöner G (2014) Use of the uncontrolled manifold (UCM) approach to understand motor variability, motor equivalence, and self-motion. In: Levin MF (ed) Progress in motor control. Springer, New York, pp 91–100Google Scholar
  29. Scholz JP, Schoner G (1999) The uncontrolled manifold concept: identifying control variables for a functional task. Exp Brain Res 126(3):289–306CrossRefPubMedGoogle Scholar
  30. Scholz JP, Schoner G, Latash ML (2000) Identifying the control structure of multijoint coordination during pistol shooting. Exp Brain Res 135(3):382–404CrossRefPubMedGoogle Scholar
  31. Scholz JP, Danion F, Latash ML, Schoner G (2002) Understanding finger coordination through analysis of the structure of force variability. Biol Cybern 86(1):29–39CrossRefPubMedGoogle Scholar
  32. Scholz JP, Kang N, Patterson D, Latash ML (2003) Uncontrolled manifold analysis of single trials during multi-finger force production by persons with and without Down syndrome. Exp Brain Res 153(1):45–58. doi: 10.1007/s00221-003-1580-8 CrossRefPubMedGoogle Scholar
  33. Scholz JP, Schoner G, Hsu WL, Jeka JJ, Horak F, Martin V (2007) Motor equivalent control of the center of mass in response to support surface perturbations. Exp Brain Res 180(1):163–179. doi: 10.1007/s00221-006-0848-1 CrossRefPubMedGoogle Scholar
  34. Schoner G, Scholz JP (2007) Analyzing variance in multi-degree-of-freedom movements: uncovering structure versus extracting correlations. Mot Control 11(3):259–275Google Scholar
  35. Shinohara M, Scholz JP, Zatsiorsky VM, Latash ML (2004) Finger interaction during accurate multi-finger force production tasks in young and elderly persons. Exp Brain Res 156(3):282–292. doi: 10.1007/s00221-003-1786-9 CrossRefPubMedGoogle Scholar
  36. Verrel J, Lovden M, Lindenberger U (2010) Motor-equivalent covariation stabilizes step parameters and center of mass position during treadmill walking. Exp Brain Res 207(1-2):13–26CrossRefPubMedGoogle Scholar
  37. Verrel J (2011) A formal and data-based comparison of measures of motor-equivalent covariation. J Neurosci Methods 200(2):199–206. doi: 10.1016/j.jneumeth.2011.04.006 CrossRefPubMedGoogle Scholar
  38. Verrel J, Pradon D, Vuillerme N (2012) Persistence of motor-equivalent postural fluctuations during bipedal quiet standing. PLoS One 7(10):e48312. doi: 10.1371/journal.pone.0048312 CrossRefPubMedPubMedCentralGoogle Scholar
  39. Winter DA (2009) Biomechanics and motor control of human movement, vol 4. Wiley, HobokenCrossRefGoogle Scholar
  40. Winter DA, Patla AE, Prince F, Ishac M, Gielo-Perczak K (1998) Stiffness control of balance in quiet standing. J Neurophysiol 80:1211–1221PubMedGoogle Scholar
  41. Yen JT, Chang YH (2009) Control strategy for stabilizing force with goal-equivalent joint torques is frequency-dependent during human hopping. Conf Proc IEEE Eng Med Biol Soc 2009:2115–2118. doi: 10.1109/IEMBS.2009.5334304 PubMedGoogle Scholar
  42. Yen JT, Chang YH (2010) Rate-dependent control strategies stabilize limb forces during human locomotion. J R Soc Interface 7(46):801–810. doi: 10.1098/rsif.2009.0296 CrossRefPubMedPubMedCentralGoogle Scholar
  43. Yen JT, Auyang AG, Chang YH (2009) Joint-level kinetic redundancy is exploited to control limb-level forces during human hopping. Exp Brain Res 196(3):439–451. doi: 10.1007/s00221-009-1868-4 CrossRefPubMedGoogle Scholar
  44. Zajac FE, Gordon ME (1989) Determining muscle’s force and action in multi-articular movement. Exerc Sport Sci Rev 17:187–230PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Biomechanics and Movement ScienceUniveristy of DelawareNewarkUSA
  2. 2.Department of KinesiologyTemple UniversityPhiladelphiaUSA
  3. 3.Institut für NeuroinformatikRuhr-UniversitätBochumGermany
  4. 4.School of Applied PhysiologyGeorgia Institution of TechnologyAtlantaUSA

Personalised recommendations