Experimental Brain Research

, Volume 234, Issue 6, pp 1555–1574 | Cite as

Familiar environments enhance object and spatial memory in both younger and older adults

  • Niamh A. Merriman
  • Jan Ondřej
  • Eugenie Roudaia
  • Carol O’Sullivan
  • Fiona N. NewellEmail author
Research Article


Recent evidence suggests that familiarity with an environment may protect against spatial memory decline for familiar objects in older adults. We investigated whether a familiar context also reduces age-related decline in spatial memory for novel objects. Twenty-four younger and 23 older participants viewed a virtual rendering of a local environment along two different routes, each through a well-known (West) or lesser-known (East) area within the environment. Older and younger participants reported being more familiar with one (i.e. West) area than the other. In each trial, participants were presented with one route and were instructed to learn ten novel objects and their locations along the route. Following learning, participants immediately completed five test blocks: an object recognition task, an egocentric spatial processing (direction judgement) task, an allocentric spatial processing (proximity judgement) task and two pen-and-paper tests to measure cognitive mapping abilities. First we found an age effect with worse performance by older than younger adults in all spatial tasks, particularly in allocentric spatial processing. However, our results suggested better memory for objects and directions, but not proximity judgements, when the task was associated with more familiar than unfamiliar contexts, in both age groups. There was no benefit of context when a separate young adult group (N = 24) was tested, who reported being equally familiar with both areas. These results suggest an important facilitatory role of context familiarity on object recognition, and in particular egocentric spatial memory, and have implications for enhancing spatial memory in older adults.


Ageing Spatial navigation Virtual reality Familiarity context effects Recognition 



This research was funded by the European Commission FP7 “VERVE” Project, Grant No. 288914 and by Science Foundation Ireland Principal Investigator awards (“Metropolis” Project Number 06/IN.1/I96 and “Socialising Agents” Project Number 10/IN.1/13003).


  1. Allen GL (1999) Spatial abilities, cognitive maps and wayfinding: bases for individual differences in spatial cognition and behavior. In: Golledge RG (ed) Wayfinding behavior. Johns Hopkins, Baltimore, pp 46–80Google Scholar
  2. Aminoff E, Gronau N, Bar M (2007) The parahippocampal cortex mediates spatial and nonspatial associations. Cereb Cortex 17(7):1493–1503. doi: 10.1093/cercor/bhl078 CrossRefPubMedGoogle Scholar
  3. Antonova E, Parslow D, Brammer M, Dawson GR, Jackson SH, Morris RG (2009) Age-related neural activity during allocentric spatial memory. Memory 17(2):125–143. doi: 10.1080/09658210802077348 CrossRefPubMedGoogle Scholar
  4. Begega A, Cienfuegos S, Rubio S, Santı́n JL, Miranda R, Arias JL (2001) Effects of ageing on allocentric and egocentric spatial strategies in the Wistar rat. Behav Process 53(1–2):75–85. doi: 10.1016/S0376-6357(00)00150-9 CrossRefGoogle Scholar
  5. Berthoz A, Viaud-Delmon I (1999) Multisensory integration in spatial orientation. Curr Opin Neurobiol 9:708–712. doi: 10.1016/S0959-4388(99)00041-0 CrossRefPubMedGoogle Scholar
  6. Bruce PR, Herman JF (1983) Spatial knowledge of young and elderly adults: scene recognition from familiar and novel perspectives. Exp Aging Res 9(3):169–173. doi: 10.1080/03610738308258447 CrossRefPubMedGoogle Scholar
  7. Byrne P, Becker S, Burgess N (2007) Remembering the past and imagining the future: a neural model of spatial memory and imagery. Psychol Rev 114(2):340–375. doi: 10.1037/0033-295X.114.2.340 CrossRefPubMedPubMedCentralGoogle Scholar
  8. Cabeza R, Daselaar SM, Dolcos F, Prince SE, Budde M, Nyberg L (2004) Task-independent and task-specific age effects on brain activity during working memory, visual attention and episodic retrieval. Cereb Cortex 14(4):364–375. doi: 10.1093/cercor/bhg133 CrossRefPubMedGoogle Scholar
  9. Cabeza R, Nyberg L, Park D (2005) Cognitive neuroscience of aging: linking cognitive and cerebral aging. Oxford University Press, New York. doi: 10.1176/appi.ajp.163.3.560 Google Scholar
  10. Campbell JI, Hepner IJ, Miller LA (2014) The influence of age and sex on memory for a familiar environment. J Env Psychol 40:1–8. doi: 10.1016/j.jenvp.2014.04.007 CrossRefGoogle Scholar
  11. Castelli L, Latini Corazzini L, Geminiani GC (2008) Spatial navigation in large-scale virtual environments: gender differences in survey tasks. Comput Hum Behav 24(4):1643–1667. doi: 10.1016/j.chb.2007.06.005 CrossRefGoogle Scholar
  12. Chee MWL, Goh JOS, Venkatraman V, Tan JC, Gutchess A, Sutton B, Park DC (2006) Age-related changes in object processing and contextual binding revealed using fMR adaptation. J Cogn Neurosci 18(4):495–507. doi: 10.1162/jocn.2006.18.4.495 CrossRefPubMedGoogle Scholar
  13. Craik FIM, Schloerscheidt AM (2011) Age-related differences in recognition memory: effects of materials and context change. Psychol Aging 26(3):671–677. doi: 10.1037/a0022203 CrossRefPubMedGoogle Scholar
  14. Cushman LA, Stein K, Duffy CJ (2008) Detecting navigational deficits in cognitive aging and Alzheimer disease using virtual reality. Neurology 71(12):888–895. doi: 10.1212/01.wnl.0000326262.67613.fe CrossRefPubMedPubMedCentralGoogle Scholar
  15. Davachi L, Mitchell JP, Wagner AD (2003) Multiple routes to memory: distinct medial temporal lobe processes build item and source memories. Proc Natl Acad Sci USA 100(4):2157–2162. doi: 10.1073/pnas.0337195100 CrossRefPubMedPubMedCentralGoogle Scholar
  16. Driscoll I, Hamilton DA, Petropoulos H, Yeo RA, Brooks WM, Baumgartner RN, Sutherland RJ (2003) The aging hippocampus: cognitive, biochemical and structural findings. Cereb Cortex 13(12):1344–1351. doi: 10.1093/cercor/bhg081 CrossRefPubMedGoogle Scholar
  17. Epstein RA (2005) The cortical basis of visual scene processing. Visual Cogn 12(6):954–978. doi: 10.1080/13506280444000607 CrossRefGoogle Scholar
  18. Epstein RA, Kanwisher N (1998) A cortical representation of the local visual environment. Nature 392(6676):598–601. doi: 10.1038/33402 CrossRefPubMedGoogle Scholar
  19. Epstein RA, Vass LK (2014) Neural systems for landmark-based wayfinding in humans. Philos Trans R Soc Lond Ser B Biol Sci 369(1635):20120533. doi: 10.1098/rstb.2012.0533 CrossRefGoogle Scholar
  20. Epstein RA, Higgins JS, Thompson-Schill SL (2005) Learning places from views: variation in scene processing as a function of experience and navigational ability. J Cogn Neurosci 17(1):73–83. doi: 10.1162/0898929052879987 CrossRefPubMedGoogle Scholar
  21. Epstein RA, Higgins JS, Jablonski K, Feiler AM (2007a) Visual scene processing in familiar and unfamiliar environments. J Neurophysiol 97(5):3670–3683. doi: 10.1152/jn.00003.2007 CrossRefPubMedGoogle Scholar
  22. Epstein RA, Parker WE, Feiler AM (2007b) Where am I now? Distinct roles for parahippocampal and retrosplenial cortices in place recognition. J Neurosci 27(23):6141–6149. doi: 10.1523/jneurosci.0799-07.2007 CrossRefPubMedGoogle Scholar
  23. Etienne AS, Jeffery KJ (2004) Path integration in mammals. Hippocampus 14(2):180–192. doi: 10.1002/hipo.10173 CrossRefPubMedGoogle Scholar
  24. Harris MA, Wiener JM, Wolbers T (2012) Aging specifically impairs switching to an allocentric navigational strategy. Front Aging Neurosci 4(29):1–9. doi: 10.3389/fnagi.2012.00029 Google Scholar
  25. Hartley T, Maguire EA, Spiers HJ, Burgess N (2003) The well-worn route and the path less traveled: distinct neural bases of route following and wayfinding in humans. Neuron 37(5):877–888. doi: 10.1016/S0896-6273(03)00095-3 CrossRefPubMedGoogle Scholar
  26. Hayes SM, Nadel L, Ryan L (2007) The effect of scene context on episodic object recognition: parahippocampal cortex mediates memory encoding and retrieval success. Hippocampus 889:873–889. doi: 10.1002/hipo CrossRefGoogle Scholar
  27. Head D, Isom M (2010) Age effects on wayfinding and route learning skills. Behav Brain Res 209(1):49–58. doi: 10.1016/j.bbr.2010.01.012 CrossRefPubMedGoogle Scholar
  28. Hegarty M, Richardson AE, Montello DR, Lovelace K, Subbiah I (2002) Development of a self-report measure of environmental spatial ability. Intelligence 30:425–447CrossRefGoogle Scholar
  29. Hirshhorn M, Grady C, Rosenbaum RS, Winocur G, Moscovitch M (2012) The hippocampus is involved in mental navigation for a recently learned, but not a highly familiar environment: a longitudinal fMRI study. Hippocampus 22(4):842–852. doi: 10.1002/hipo.20944 CrossRefPubMedGoogle Scholar
  30. Hollingworth A, Henderson JM (1998) Does consistent scene context facilitate object perception? J Exp Psychol Gen 127(4):398–415. doi: 10.1037/0096-3445.127.4.398 CrossRefPubMedGoogle Scholar
  31. Howard LR, Javadi AH, Yu Y, Mill RD, Morrison LC, Knight R, Spiers HJ (2014) The hippocampus and entorhinal cortex encode the path and Euclidean distances to goals during navigation. Curr Biol 24(12):1331–1340. doi: 10.1016/j.cub.2014.05.001 CrossRefPubMedPubMedCentralGoogle Scholar
  32. Hultsch DF, MacDonald SWS, Dixon RA (2002) Variability in reaction time performance of younger and older adults. J Gerontol Psychol Sci 57(2):P101–P115. doi: 10.1093/geronb/57.2.P101 CrossRefGoogle Scholar
  33. Iaria G, Petrides M, Dagher A, Pike B, Bohbot VD (2003) Cognitive strategies dependent on the hippocampus and caudate nucleus in human navigation: variability and change with practice. J Neurosci 23(13):5945–5952PubMedGoogle Scholar
  34. Iaria G, Palermo L, Committeri G, Barton JJS (2009) Age differences in the formation and use of cognitive maps. Behav Brain Res 196(2):187–191. doi: 10.1016/j.bbr.2008.08.040 CrossRefPubMedGoogle Scholar
  35. Janzen G, van Turennout M (2004) Selective neural representation of objects relevant for navigation. Nat Neurosci 7(6):673–677. doi: 10.1038/nn1257 CrossRefPubMedGoogle Scholar
  36. Kessels RPC, Te Boekhorst S, Postma A (2005) The contribution of implicit and explicit memory to the effects of errorless learning: a comparison between young and older adults. J Int Neuropsychol Soc 11(2):144–151. doi: 10.1017/S1355617705050174 CrossRefPubMedGoogle Scholar
  37. Kirasic KC (1989) The effects of age and environmental familiarity on adults’ spatial problem-solving performance: evidence of a hometown advantage. Exp Aging Res 15(4):181–187. doi: 10.1080/03610738908259773 CrossRefPubMedGoogle Scholar
  38. Kirasic KC (1991) Spatial cognition and behavior in young and elderly adults: implications for learning new environments. Psychol Aging 6(1):10–18. doi: 10.1037/0882-7974.6.1.10 CrossRefPubMedGoogle Scholar
  39. Konishi K, Etchamendy N, Roy S, Marighetto A, Rajah N, Bohbot VD (2013) Decreased functional magnetic resonance imaging activity in the hippocampus in favor of the caudate nucleus in older adults tested in a virtual navigation task. Hippocampus 23(11):1005–1014. doi: 10.1002/hipo.22181 CrossRefPubMedGoogle Scholar
  40. Liu I, Levy RM, Barton JJS, Iaria G (2011) Age and gender differences in various topographical orientation strategies. Brain Res 1410:112–119. doi: 10.1016/j.brainres.2011.07.005 CrossRefPubMedGoogle Scholar
  41. Lloyd J, Persaud NV, Powell TE (2009) Equivalence of real-world and virtual-reality route learning: a pilot study. Cyberpsychol Behav 12(4):423–427. doi: 10.1089/cpb.2008.0326 CrossRefPubMedGoogle Scholar
  42. Lövdén M, Schaefer S, Noack H, Bodammer NC, Kühn S, Heinze HJ, Lindenberger U (2012) Spatial navigation training protects the hippocampus against age-related changes during early and late adulthood. Neurobiol Aging 33(3):620.e9–620.e22. doi: 10.1016/j.neurobiolaging.2011.02.013 CrossRefGoogle Scholar
  43. Luis CA, Keegan AP, Mullan M (2009) Cross validation of the Montreal Cognitive Assessment in community dwelling older adults residing in the Southeastern US. Int J Geriatr Psychiatry 24(2):197–201. doi: 10.1002/gps CrossRefPubMedGoogle Scholar
  44. Maguire EA, Burke T, Phillips J, Staunton H (1996) Topographical disorientation following unilateral temporal lobe lesions in humans. Neuropsychologia 34(10):993–1001. doi: 10.1016/0028-3932(96)00022-X CrossRefPubMedGoogle Scholar
  45. Maguire EA, Burgess N, Donnett JG, Frackowiak RSJ, Frith CD, O’Keefe J (1998) Knowing where and getting there: a human navigation network. Science 280(5365):921–924. doi: 10.1126/science.280.5365.921 CrossRefPubMedGoogle Scholar
  46. Maguire EA, Gadian DG, Johnsrude IS, Good CD, Ashburner J, Frackowiak RSJ, Frith CD (2000) Navigation-related structural change in the hippocampi of taxi drivers. Proc Natl Acad Sci USA 97(8):4398–4403. doi: 10.1073/pnas.070039597 CrossRefPubMedPubMedCentralGoogle Scholar
  47. Meneghetti C, Borella E, Fiore F, Beni R (2013) The ability to point to well-known places in young and older adults. Aging Clin Exper Res 25(2):203–209. doi: 10.1007/s40520-013-0027-8 CrossRefGoogle Scholar
  48. Meulenbroek O, Petersson KM, Voermans N, Weber B, Fernández G (2004) Age differences in neural correlates of route encoding and route recognition. NeuroImage 22(4):1503–1514. doi: 10.1016/j.neuroimage.2004.04.007 CrossRefPubMedGoogle Scholar
  49. Moffat SD (2009) Aging and spatial navigation: what do we know and where do we go? Neuropsychol Review 19(4):478–489. doi: 10.1007/s11065-009-9120-3 CrossRefGoogle Scholar
  50. Moffat SD, Resnick SM (2002) Effects of age on virtual environment place navigation and allocentric cognitive mapping. Behav Neurosci 116(5):851–859. doi: 10.1037//0735-7044.116.5.851 CrossRefPubMedGoogle Scholar
  51. Moffat SD, Zonderman AB, Resnick SM (2001) Age differences in spatial memory in a virtual environment navigation task. Neurobiol Aging 22(5):787–796. doi: 10.1016/S0197-4580(01)00251-2 CrossRefPubMedGoogle Scholar
  52. Moffat SD, Elkins W, Resnick SM (2006) Age differences in the neural systems supporting human allocentric spatial navigation. Neurobiol Aging 27(7):965–972. doi: 10.1016/j.neurobiolaging.2005.05.011 CrossRefPubMedGoogle Scholar
  53. Muffato V, Della Giustina M, Meneghetti C, De Beni R (2015) Age-related differences in pointing accuracy in familiar and unfamiliar environments. Cognit Process 16(S1):313–317. doi: 10.1007/s10339-015-0720-y CrossRefGoogle Scholar
  54. Mullally SL, Maguire EA (2011) A new role for the parahippocampal cortex in representing space. J Neurosci 31(20):7441–7449. doi: 10.1523/jneurosci.0267-11.2011 CrossRefPubMedPubMedCentralGoogle Scholar
  55. Nasreddine ZS, Phillips NA, Bédirian V, Charbonneau S, Whitehead V, Collin I, Chertkow H (2005) The Montreal Cognitive Assessment, MoCA: a brief screening tool for mild cognitive impairment. J Am Geriatr Soc 53(4):695–699. doi: 10.1111/j.1532-5415.2005.53221.x CrossRefPubMedGoogle Scholar
  56. Newman EL, Caplan JB, Kirschen MP, Korolev IO, Sekuler R, Kahana MJ (2007) Learning your way around town: how virtual taxicab drivers learn to use both layout and landmark information. Cognition 104(2):231–253. doi: 10.1016/j.cognition.2006.05.013 CrossRefPubMedGoogle Scholar
  57. O’Keefe J, Nadel L (1978) The hippocampus as a cognitive map. Oxford University Press, OxfordGoogle Scholar
  58. Oliva A, Torralba A (2007) The role of context in object recognition. Trends Cognit Sci 11(12):520–527. doi: 10.1016/j.tics.2007.09.009 CrossRefGoogle Scholar
  59. Packard MG, McGaugh JL (1996) Inactivation of hippocampus or caudate nucleus with lidocaine differentially affects expression of place and response learning. Neurobiol Learn Mem 72(0007):65–72. doi: 10.1006/nlme.1996.0007 CrossRefGoogle Scholar
  60. Park DC, Reuter-Lorenz P (2009) The adaptive brain: aging and neurocognitive scaffolding. Ann Rev Psychol 60:173–196. doi: 10.1146/annurev.psych.59.103006.093656 CrossRefGoogle Scholar
  61. Raz N, Rodrigue KM, Kennedy KM, Head D, Gunning-Dixon F, Acker JD (2003) Differential aging of the human striatum: longitudinal evidence. Am J Neuroradiol 24(9):1849–1856PubMedGoogle Scholar
  62. Raz N, Ghisletta P, Rodrigue KM, Kennedy KM, Lindenberger U (2010) Trajectories of brain aging in middle-aged and older adults: regional and individual differences. NeuroImage 51(2):501–511. doi: 10.1016/j.neuroimage.2010.03.020 CrossRefPubMedPubMedCentralGoogle Scholar
  63. Rich EL, Shapiro M (2009) Rat prefrontal cortical neurons selectively code strategy switches. J Neurosci 29(22):7208–7219. doi: 10.1523/jneurosci.6068-08.2009 CrossRefPubMedPubMedCentralGoogle Scholar
  64. Robin J, Moscovitch M (2014) The effects of spatial contextual familiarity on remembered scenes, episodic memories, and imagined future events. J Exp Psychol Learn Mem Cognit 40(2):459–475. doi: 10.1037/a0034886 CrossRefGoogle Scholar
  65. Robin J, Wynn J, Moscovitch M (2015) The spatial scaffold: the effects of spatial context on memory for events. J Exp Psychol Learn Mem Cognit. doi: 10.1037/xlm0000167 Google Scholar
  66. Rodgers MK, Sindone JA III, Moffat SD (2012) Effects of age on navigation strategy. Neurobiol Aging 33(1):202.e15–202.e22. doi: 10.1016/j.neurobiolaging.2010.07.021 CrossRefGoogle Scholar
  67. Rosenbaum RS, Winocur G, Grady CL, Ziegler M, Moscovitch M (2007) Memory for familiar environments learned in the remote past: fMRI studies of healthy people and an amnesic person with extensive bilateral hippocampal lesions. Hippocampus 17(12):1241–1251. doi: 10.1002/hipo CrossRefPubMedGoogle Scholar
  68. Rosenbaum RS, Winocur G, Binns MA, Moscovitch M (2012) Remote spatial memory in aging: all is not lost. Front Aging Neurosci 4(25):1–10. doi: 10.3389/fnagi.2012.00025 Google Scholar
  69. Salthouse TA (1996) The processing-speed theory of adult age differences in cognition. Psychol Rev 103(3):403–428. doi: 10.1037/0033-295X.103.3.403 CrossRefPubMedGoogle Scholar
  70. Schinazi VR, Epstein RA (2010) Neural correlates of real-world route learning. NeuroImage 53(2):725–735. doi: 10.1016/j.neuroimage.2010.06.065 CrossRefPubMedGoogle Scholar
  71. Schuck NW, Doeller CF, Polk TA, Lindenberger U, Li S-C (2015) Human aging alters the neural computation and representation of space. NeuroImage 117:141–150. doi: 10.1016/j.neuroimage.2015.05.031 CrossRefPubMedGoogle Scholar
  72. Sorita E, N’kaoua B, Larrue F, Criquillon J, Simion A, Sauzéon H, Mazaux J-M (2013) Do patients with traumatic brain injury learn a route in the same way in real and virtual environments? Disabil Rehabil 35(16):1371–1379. doi: 10.3109/09638288.2012.738761 CrossRefPubMedGoogle Scholar
  73. Steck SD, Mallot HA (2000) The role of global and local landmarks in virtual environment navigation. Presence Teleop Virtual Environ 9(1):69–83. doi: 10.1162/105474600566628 CrossRefGoogle Scholar
  74. Suzuki WA, Amaral DG (1994) Perirhinal and parahippocampal cortices of the macaque monkey: cortical afferents. J Comp Neurol 350(4):497–533CrossRefPubMedGoogle Scholar
  75. Taillade M, Sauzéon H, Déjos M, Arvind Pala P, Larrue F, Wallet G, N’Kaoua B (2013) Executive and memory correlates of age-related differences in wayfinding performances using a virtual reality application. Aging Neuropsychol Cognit 20(3):298–319. doi: 10.1080/13825585.2012.706247 CrossRefGoogle Scholar
  76. Thorndyke PW, Hayes-Roth B (1982) Differences in spatial knowledge acquired from maps and navigation. Cogn Psychol 14(4):560–589CrossRefPubMedGoogle Scholar
  77. Tolman EC (1948) Cognitive maps in rats and men. Psychol Rev 55(4):189–208. doi: 10.1037/h0061626 CrossRefPubMedGoogle Scholar
  78. Troiani V, Stigliani A, Smith ME, Epstein RA (2014) Multiple object properties drive scene-selective regions. Cereb Cortex 24(4):883–897. doi: 10.1093/cercor/bhs364 CrossRefPubMedPubMedCentralGoogle Scholar
  79. van Kesteren MTR, Ruiter DJ, Fernández G, Henson RN (2012) How schema and novelty augment memory formation. Trends Neurosci 35(4):211–219. doi: 10.1016/j.tins.2012.02.001 CrossRefPubMedGoogle Scholar
  80. Vanderhill S, Hultsch DF, Hunter MA, Strauss E (2010) Self-reported cognitive inconsistency in older adults. Aging Neuropsychol Cognit 17(4):385–405. doi: 10.1080/13825580903265699 CrossRefGoogle Scholar
  81. Waller D, Lippa Y (2007) Landmarks as beacons and associative cues: their role in route learning. Memory Cognit 35(5):910–924. doi: 10.3758/BF03193465 CrossRefGoogle Scholar
  82. Wiener JM, Berthoz A, Wolbers T (2011) Dissociable cognitive mechanisms underlying human path integration. Exp Brain Res 208(1):61–71. doi: 10.1007/s00221-010-2460-7 CrossRefPubMedGoogle Scholar
  83. Wiener JM, Kmecova H, de Condappa O (2012) Route repetition and route retracing: effects of cognitive aging. Front Aging Neurosci 4(7):1–7. doi: 10.3389/fnagi.2012.00007 Google Scholar
  84. Wiener JM, de Condappa O, Harris MA, Wolbers T (2013) Maladaptive bias for extrahippocampal navigation strategies in aging humans. J Neurosci 33(14):6012–6017. doi: 10.1523/jneurosci.0717-12.2013 CrossRefPubMedGoogle Scholar
  85. Wilkniss SM, Jones MG, Korol DL, Gold PE, Manning CA (1997) Age-related differences in an ecologically based study of route learning. Psychol Aging 12(2):372–375. doi: 10.1037/0882-7974.12.2.372 CrossRefPubMedGoogle Scholar
  86. Wolbers T, Büchel C (2005) Dissociable retrosplenial and hippocampal contributions to successful formation of survey representations. J Neurosci 25(13):3333–3340. doi: 10.1523/jneurosci.4705-04.2005 CrossRefPubMedGoogle Scholar
  87. Woollett K, Maguire EA (2010) The effect of navigational expertise on wayfinding in new environments. J Env Psychol 30(4):565–573. doi: 10.1016/j.jenvp.2010.03.003 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Niamh A. Merriman
    • 1
  • Jan Ondřej
    • 2
  • Eugenie Roudaia
    • 1
  • Carol O’Sullivan
    • 2
  • Fiona N. Newell
    • 1
    Email author
  1. 1.School of Psychology and Institute of Neuroscience, Lloyd BuildingTrinity College DublinDublin 2Ireland
  2. 2.Graphics, Vision and Visualisation Group, School of Computer Science and StatisticsTrinity College DublinDublin 2Ireland

Personalised recommendations