Experimental Brain Research

, Volume 234, Issue 6, pp 1459–1468 | Cite as

The kinaesthetic mirror illusion: How much does the mirror matter?

  • Marie Chancel
  • Clémentine Brun
  • Anne Kavounoudias
  • Michel Guerraz
Research Article


The reflection of a moving hand in a mirror positioned in the sagittal plane can create an illusion of symmetrical, bimanual movement. This illusion is implicitly presumed to be of visual origin. However, muscle proprioceptive afferents of the arm reflected in the mirror might also affect the perceived position and movement of the other arm. We characterized the relative contributions of visual and proprioceptive cues by performing two experiments. In Experiment 1, we sought to establish whether kinaesthetic illusions induced using the mirror paradigm would survive marked visual impoverishment (obtained by covering between 0 and 100 % of the mirror in 16 % steps). We found that the mirror illusion was only significantly influenced when the visual degradation was 84 % or more. In Experiment 2, we masked the muscle proprioceptive afferents of the arm reflected in the mirror by co-vibrating antagonistic muscles. We found that masking the proprioceptive afferents reduced the velocity of the illusory displacement of the other arm. These results confirm that the mirror illusion is not a purely visual illusion but emerges from a combination of congruent signals from the two arms, i.e. visual afferents from the virtually moving arm and proprioceptive afferents from the contralateral, moving arm.


Kinaesthesia Mirror illusion Muscle proprioception Visual impoverishment 



We thank Dr. David Fraser (Biotech Communication, Damery, France) for improving the manuscript’s English and Dr. Jean-Luc Roulin for his help in setting-up Experiment 1.


The work was funded by the University Savoie Mont Blanc (Chambéry, France).

Compliance with ethical standards

Conflict of interest

None of the authors have any conflicts of interests.


  1. Beaulé V, Tremblay S, Théoret H (2012) Interhemispheric control of unilateral movement. Neural Plast 2012:627816. doi: 10.1155/2012/627816 PubMedPubMedCentralGoogle Scholar
  2. Blanchard C, Roll R, Roll J-P, Kavounoudias A (2011) Combined contribution of tactile and proprioceptive feedback to hand movement perception. Brain Res 1382:219–229. doi: 10.1016/j.brainres.2011.01.066 CrossRefPubMedGoogle Scholar
  3. Blanchard C, Roll R, Roll J-P, Kavounoudias A (2013) Differential contributions of vision, touch and muscle proprioception to the coding of hand movements. PLoS ONE 8:e62475. doi: 10.1371/journal.pone.0062475 CrossRefPubMedPubMedCentralGoogle Scholar
  4. Bock O, Pipereit K, Mierau A (2007) A method to reversibly degrade proprioceptive feedback in research on human motor control. J Neurosci Methods 160:246–250. doi: 10.1016/j.jneumeth.2006.09.010 CrossRefPubMedGoogle Scholar
  5. Brun C, Guerraz M (2015) Anchoring the “floating arm”. Use of proprioceptive and mirror visual feedback from one arm to control involuntary displacement of the other arm. Neuroscience 310:268–278CrossRefPubMedGoogle Scholar
  6. Brun C, Metral M, Chancel M, Kavounoudias A, Luyat M, Guerraz M (2015) Passive or simulated displacement of one arm (but not its mirror reflection) modulates the involuntary motor behavior of the other arm. Neuroscience 285:343–355CrossRefPubMedGoogle Scholar
  7. Collins DF, Prochazka A (1996) Movement illusions evoked by ensemble cutaneous input from the dorsum of the human hand. J Physiol 496:857–871CrossRefPubMedPubMedCentralGoogle Scholar
  8. Cordo P, Gurfinkel VS, Bevan L, Kerr GK (1995) Proprioceptive consequences of tendon vibration during movement. J Neurophysiol 74:1675–1688PubMedGoogle Scholar
  9. Dohle C, Puellen J, Nakaten A et al (2009) Mirror therapy promotes recovery from severe hemiparesis: a randomized controlled trial. Neurorehabil Neural Repair 23:209–217. doi: 10.1177/1545968308324786 CrossRefPubMedGoogle Scholar
  10. Formaggio E, Storti SF, Boscolo Galazzo I et al (2013) Modulation of event-related desynchronization in robot-assisted hand performance: brain oscillatory changes in active, passive and imagined movements. J Neuroeng Rehabil 10:24. doi: 10.1186/1743-0003-10-24 CrossRefPubMedPubMedCentralGoogle Scholar
  11. Gilhodes J, Roll J, Tardy-Gervet M (1986) Perceptual and motor effects of agonist-antagonist muscle vibration in man. Exp Brain Res 61:395–402CrossRefPubMedGoogle Scholar
  12. Goodwin G, Mccloskey D, Matthews P (1972) The contribution of muscle afferents to kinesthesia shown by vibration induced illusions of movement and by the effects of paralysing joint afferents. Brain 95:705–748. doi: 10.1093/brain/95.4.705 CrossRefPubMedGoogle Scholar
  13. Gregory JE, Morgan DL, Proske U (1988) Aftereffects in the responses of cat muscle spindles and errors of limb position sense in man. J Neurophysiol 59:1220–1230PubMedGoogle Scholar
  14. Guerraz M (2015) Mirror paradigm and mirror therapy: What about the benefit of the virtual hand on motor behavior? Ther Targets Neurol Dis 2(1):517Google Scholar
  15. Guerraz M, Provost S, Narison R et al (2012) Integration of visual and proprioceptive afferents in kinesthesia. Neuroscience 223:258–268. doi: 10.1016/j.neuroscience.2012.07.059 CrossRefPubMedGoogle Scholar
  16. Hakuta N, Izumizaki M, Kigawa K, Murai N, Atsumi T, Homma I (2014) Proprioceptive illusions created by vibration of one arm are altered by vibrating the other arm. Exp Brain Res 232:2197–2206CrossRefPubMedGoogle Scholar
  17. Holmes NP, Crozier G, Spence C (2004) When mirrors lie: “Visual capture” of arm position impairs reaching performance. Cogn Affect Behav Neurosci 4:193–200. doi: 10.3758/CABN.4.2.193 CrossRefPubMedPubMedCentralGoogle Scholar
  18. Holmes NP, Snijders HJ, Spence C (2006) Reaching with alien limbs: Visual exposure to prosthetic hands in a mirror biases proprioception without accompanying illusions of ownership. Percept Psychophys 68:685–701. doi: 10.3758/BF03208768 CrossRefPubMedPubMedCentralGoogle Scholar
  19. Izumizaki M, Tsuge M, Akai L et al (2010) The illusion of changed position and movement from vibrating one arm is altered by vision or movement of the other arm. J Physiol 588:2789–2800. doi: 10.1113/jphysiol.2010.192336 CrossRefPubMedPubMedCentralGoogle Scholar
  20. Johansson G (1973) Visual-perception of biological motion and a model for its analysis. Percept Psychophys 14:201–211. doi: 10.3758/BF03212378 CrossRefGoogle Scholar
  21. Kigawa K, Izumizaki M, Tsukada S, Hakuta N (2015) Proprioceptive interaction between the two arms in a single-arm pointing task. PLoS ONE 10:e0137031CrossRefPubMedPubMedCentralGoogle Scholar
  22. Kuehn E, De Havas J, Silkoset E, Gomi H, Haggard P (2015) On the bimanual integration of proprioceptive information. Exp Brain Res 233:1273–1288CrossRefPubMedGoogle Scholar
  23. Metral M, Chancel M, Brun C, Luyat M, Kavounoudias A, Guerraz M (2015) Kinaesthetic mirror illusion and spatial congruence. Exp Brain Res 233:1463–1470CrossRefPubMedGoogle Scholar
  24. Munzert J, Hohmann T, Hossner EJ (2010) Discriminating throwing distances from point-light displays with masked ball flight. Eur J Cogn Psychol 22:247–264CrossRefGoogle Scholar
  25. Perez MA, Butler JE, Taylor JL (2014) Modulation of transcallosal inhibition by bilateral activation of agonist and antagonist proximal arm muscles. J Neurophysiol 111:405–414. doi: 10.1152/jn.00322.2013 CrossRefPubMedPubMedCentralGoogle Scholar
  26. Proske U, Gandevia SC (2012) The proprioceptive senses: their roles in signaling body shape, body position and movement, and muscle force. Physiol Rev 92:1651–1697. doi: 10.1152/physrev.00048.2011 CrossRefPubMedGoogle Scholar
  27. Proske U, Morgan DL, Gregory JE (1993) Thixotropy in skeletal muscle and in muscle spindles: a review. Prog Neurobiol 41:705–721CrossRefPubMedGoogle Scholar
  28. Ramachandran VS, Altschuler EL (2009) The use of visual feedback, in particular mirror visual feedback, in restoring brain function. Brain 132:1693–1710CrossRefPubMedGoogle Scholar
  29. Ramachandran VS, Rogers-Ramachandran D, Cobb S (1995) Touching the phantom limb. Nature 377:489–490CrossRefPubMedGoogle Scholar
  30. Ribot E, Roll JP, Gauthier GM (1986) Comparative effects of whole-body vibration on sensorimotor performance achieved with a mini-stick and a macro-stick in force and position control modes. Aviat Space Environ Med 57:792–799PubMedGoogle Scholar
  31. Ridderikhoff A, Peper E, Beek PJ (2006) Bilateral phase entrainment by movement-elicited afference contributes equally to the stability of in-phase and antiphase coordination. Neurosci Lett 399:71–75CrossRefPubMedGoogle Scholar
  32. Roll JP, Vedel JP, Ribot E (1989) Alteration of proprioceptive messages induced by tendon vibration in man: a microneurographic study. Exp Brain Res 76:213–222CrossRefPubMedGoogle Scholar
  33. Rosen B, Lundborg G (2005) Training with a mirror in rehabilitation of the hand. Scand J Plast Reconstr Surg Hand Surg 39:104–108. doi: 10.1080/02844310510006187 CrossRefPubMedGoogle Scholar
  34. Runeson S, Frykholm G (1981) Visual perception of lifted weight. J Exp Psychol Hum Percept Perform 7:733–740. doi: 10.1037/0096-1523.7.4.733 CrossRefPubMedGoogle Scholar
  35. Teasdale N, Forget R, Bard C, Paillard J, Fleury M, Lamarre Y (1993) The role of proprioceptive information for the production of isometric forces and for handwriting tasks. Acta Psychol 82:179–191CrossRefGoogle Scholar
  36. Troje NF (2012) What is biological motion? Definition, stimuli and paradigms. In: Rutherford MD, Kuhlmeier VA (eds) Social perception: detection and interpretation of animacy, agency, and intention. MIT Press, CambridgeGoogle Scholar
  37. Tsuge M, Izumizaki M, Kigawa K, Atsumi T, Homma I (2012) Interaction between vibration-evoked proprioceptive illusions and mirror-evoked visual illusions in an arm-matching task. Exp Brain Res 223:541–551CrossRefPubMedGoogle Scholar
  38. Van den Berg FE, Swinnen SP, Wenderoth N (2011) Excitability of the motor cortex ipsilateral to the moving body side depends on spatio-temporal task complexity and hemispheric specialization. PLoS ONE 6:e17742. doi: 10.1371/journal.pone.0017742 CrossRefPubMedPubMedCentralGoogle Scholar
  39. Ziemann U, Hallett M (2001) Hemispheric asymmetry of ipsilateral motor cortex activation during unimanual motor tasks: further evidence for motor dominance. Clin Neurophysiol 112:107–113. doi: 10.1016/S1388-2457(00)00502-2 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Marie Chancel
    • 1
    • 2
  • Clémentine Brun
    • 1
    • 3
  • Anne Kavounoudias
    • 2
  • Michel Guerraz
    • 1
  1. 1.CNRS, LPNC UMR 5105University Savoie Mont BlancChambéryFrance
  2. 2.CNRS, NIA UMR 7260MarseilleFrance
  3. 3.Center for Interdisciplinary Research in Rehabilitation and Social Integration (CIRRIS)Laval UniversityQuebecCanada

Personalised recommendations