Experimental Brain Research

, Volume 234, Issue 2, pp 429–441 | Cite as

Differential neural activity patterns for spatial relations in humans: a MEG study

  • Nicole M. Scott
  • Arthur Leuthold
  • Maria D. Sera
  • Apostolos P. GeorgopoulosEmail author
Research Article


Children learn the words for abovebelow relations earlier than for leftright relations, despite treating these equally well in a simple visual categorization task. Even as adults—conflicts in congruency, such as when a stimulus is depicted in a spatially incongruent manner with respect to salient global cues—can be challenging. Here we investigated the neural correlates of encoding and maintaining in working memory abovebelow and leftright relational planes in 12 adults using magnetoencephalography in order to discover whether abovebelow relations are represented by the brain differently than leftright relations. Adults performed perfectly on the task behaviorally, so any differences in neural activity were attributed to the stimuli’s cognitive attributes. In comparing abovebelow to leftright relations during stimulus encoding, we found the greatest differences in neural activity in areas associated with space and movement. In comparing congruent to incongruent trials, we found the greatest differential activity in premotor areas. For both contrasts, brain areas involved in the encoding phase were also involved in the maintenance phase, which provides evidence that those brain areas are particularly important in representing the relational planes or congruency types throughout the trial. When comparing neural activity associated with the relational planes during working memory, additional right posterior areas were implicated, whereas the congruent-incongruent contrast implicated additional bilateral frontal and temporal areas. These findings are consistent with the hypothesis leftright relations are represented differently than abovebelow relations.


Left–right confusion MEG Congruency Relational plane Working memory Encoding 



This study was partially supported by a University of Minnesota Interdisciplinary Doctoral Fellowship, a University of Minnesota Doctoral Dissertation Fellowship (both to NMS), NIH training Grant No. T32 HD007151, the US Department of Veterans Affairs, and the McKnight Presidential Cognitive Neuroscience Chair.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflicts of interest.

Human subjects/informed consent

The study protocol was approved by the Institutional Review Boards of the Minneapolis VA Medical Center and the University of Minnesota. The study was performed in accordance with the ethical standards outlined in the Declaration of Helsinki. All subjects provided written informed consent prior to participating in the study.


  1. Amorapanth PX, Widick P, Chatterjee A (2009) The neural basis for spatial relations. J Cogn Neurosci 22:1739–1753CrossRefGoogle Scholar
  2. Anglade C, Thiel A, Ansaldo AI (2014) The complementary role of the cerebral hemispheres in recovery from aphasia after stroke: a critical review of literature. Brain Inj 28:138–45. doi: 10.3109/02699052.2013.859734 PubMedCrossRefGoogle Scholar
  3. Baciu M, Koenig O, Vernier MP et al (1999) Categorical and coordinate spatial relations: fMRI evidence for hemispheric specialization. NeuroReport 10:1373–1378PubMedCrossRefGoogle Scholar
  4. Baldo JV, Bunge SA, Wilson SM, Dronkers NF (2010) Is relational reasoning dependent on language? A voxel-based lesion symptom mapping study. Brain Lang 113:59–64. doi: 10.1016/j.bandl.2010.01.004 PubMedPubMedCentralCrossRefGoogle Scholar
  5. Bowers JM, Bradley KI, Kennison M (2013) Hemispheric differences in the processing of words learned early versus later in childhood. J Gen Psychol 140:174–186PubMedCrossRefGoogle Scholar
  6. Brandt J, Mackavey W (1981) Left–right confusion and the perception of bilateral symmetry. Int J Neurosci 12:87–94PubMedCrossRefGoogle Scholar
  7. Bunge S, Wendelken C, Badre D, Wagner AD (2005) Analogical reasoning and prefrontal cortex: evidence for separable retrieval and integration mechanisms. Cereb Cortex 15:239–249. doi: 10.1093/cercor/bhh126 PubMedCrossRefGoogle Scholar
  8. Carlson LA, West R, Taylor HA, Herndon RW (2002) Neural correlates of spatial term use. J Exp Psychol Hum Percept Perform 28:1391–1408PubMedCrossRefGoogle Scholar
  9. Chafee MV, Averbeck BB, Crowe DA (2007) Representing spatial relationships in posterior parietal cortex: single neurons code object-referenced position. Cereb Cortex 17:2914–2932. doi: 10.1093/cercor/bhm017 PubMedCrossRefGoogle Scholar
  10. Christoff K, Prabhakaran V, Dorfman J et al (2001) Rostrolateral prefrontal cortex involvement in relational integration during reasoning. Neuroimage 14:1136–1149. doi: 10.1006/nimg.2001.0922 PubMedCrossRefGoogle Scholar
  11. Clark EV (1980) Here’s the “Top:” nonlinguistic strategies in the acquisition of orientational terms. Child Dev 51:329–338Google Scholar
  12. Corballis MC, Beale IL (1970) Bilateral symmetry and behavior. Psychol Rev 77:451–464PubMedCrossRefGoogle Scholar
  13. Corkin S (2002) What’s new with the amnesic patient H.M.? Nat Rev Neurosci 3:153–160PubMedCrossRefGoogle Scholar
  14. Cox MV, Richardson TR (1985) How do children describe spatial relationships? J Child Lang 12:611–620. doi: 10.1017/S0305000900006681 PubMedCrossRefGoogle Scholar
  15. Crone EA, Wendelken C, van Leijenhortst L et al (2009) Neurocognitive development of relational reasoning. Dev Sci 12:55–66PubMedPubMedCentralCrossRefGoogle Scholar
  16. Damasio H (2005) Human brain anatomy in computerized images, 2nd edn. Oxford University Press, New YorkCrossRefGoogle Scholar
  17. Damasio H, Grabowski TJ, Tranel D et al (2001) Neural correlates of naming actions and of naming spatial relations. NeuroImage 13:1053–1064. doi: 10.1006/nimg.2001.0775 PubMedCrossRefGoogle Scholar
  18. Dessalegn B, Landau B (2008) More than meets the eye. Psychol Sci 19:189–195PubMedCrossRefGoogle Scholar
  19. Farrant K, Uddin LQ (2015) Asymmetric development of dorsal and ventral attention networks in the human brain. Dev Cogn Neurosci. doi: 10.1016/j.dcn.2015.02.001 PubMedGoogle Scholar
  20. Fiebach CJ, Friederici AD, Müller K et al (2003) Distinct brain representations for early and late learned words. Neuroimage 19:1627–1637. doi: 10.1016/S1053-8119(03)00227-1 PubMedCrossRefGoogle Scholar
  21. Franciotti R, D’Ascenzo S, Di Domenico A et al (2013) Focusing narrowly or broadly attention when judging categorical and coordinate spatial relations: a MEG study. PLoS ONE. doi: 10.1371/journal.pone.0083434 Google Scholar
  22. Gava L, Valenza E, Turati C (2009) Newborns’ perception of left–right spatial relations. Child Dev 80:1797–1810PubMedCrossRefGoogle Scholar
  23. Gerstmann J (1940) Syndrome of finger agnosia, disorientation for right and left, agraphia and acalculia. Arch Neurol Psychiatry 44:398–408CrossRefGoogle Scholar
  24. Goodwin SJ, Blackman RK, Sakellaridi S, Chafee MV (2012) Using rules to define categories: asymmetric distribution of executive control signals in the monkey prefrontal–parietal network. J Neurosci 32:3499–3515. doi: 10.1523/JNEUROSCI.3585-11.2012 PubMedPubMedCentralCrossRefGoogle Scholar
  25. Hannay HJ, Ciaccia PJ, Kerr JW, Barrett D (1990) Self-report of right–left confusion in college men and women. Percept Mot Skills 70:451–457PubMedCrossRefGoogle Scholar
  26. Hayward WG, Tarr MJ (1995) Spatial language and spatial representation. Cognition 55:39–84PubMedCrossRefGoogle Scholar
  27. Hirnstein M, Ocklenburg S, Schneider D, Hausmann M (2009) Sex differences in left–right confusion depend on hemispheric asymmetry. Cortex 45:891–899PubMedCrossRefGoogle Scholar
  28. Jordan K, Wustenberg T, Jaspers-Feyer F et al (2006) Sex differences in left/right confusion. Cortex 42:69–78PubMedCrossRefGoogle Scholar
  29. Karnath HO, Ferber S, Himmelbach M (2005) Spatial awareness is a function of the temporal not the posterior parietal lobe. Nature 411:950–953CrossRefGoogle Scholar
  30. Klingberg T, Forssberg H, Westerberg H (2002) Increased brain activity in frontal and parietal cortex underlies the development of visuospatial working memory capacity during childhood. J Cogn Neurosci 14:1–10PubMedCrossRefGoogle Scholar
  31. Kosslyn SM, Thompson WL, Gitelman DR, Alpert NM (1998) Neural systems that encode categorical versus coordinate spatial relations: PET investigations. Psychobiology 26:333–347Google Scholar
  32. Krawczyk DC (2012) The cognition and neuroscience of relational reasoning. Brain Res 1428:13–23. doi: 10.1016/j.brainres.2010.11.080 PubMedCrossRefGoogle Scholar
  33. Krawczyk DC, Michelle McClelland M, Donovan CM (2011) A hierarchy for relational reasoning in the prefrontal cortex. Cortex 47:588–597. doi: 10.1016/j.cortex.2010.04.008 PubMedCrossRefGoogle Scholar
  34. Laeng B, Okubo M, Saneyoshi A, Michimata C (2011) Processing spatial relations with different apertures of attention. Cogn Sci 35:297–329PubMedCrossRefGoogle Scholar
  35. Landau B, Hoffman JE (2005) Parallels between spatial cognition and spatial language: evidence from Williams syndrome. J Mem Lang 53:163–185. doi: 10.1016/j.jml.2004.05.007 CrossRefGoogle Scholar
  36. Li P, Gleitman L (2002) Turning the tables: language and spatial reasoning. Cognition 83:265–294PubMedCrossRefGoogle Scholar
  37. Mach E (1959/1897) The analysis of sensations. Open Court Publishing House, ChicagoGoogle Scholar
  38. MacLeod CM (1991) Half a century of research on the Stroop effect: an integrative review. Psychol Bull 109:163–203PubMedCrossRefGoogle Scholar
  39. Martin AJ, Sera MD (2006) The acquisition of spatial constructions in American sign language and English. J Deaf Stud Deaf Educ 11:391–402. doi: 10.1093/deafed/enl004 PubMedCrossRefGoogle Scholar
  40. Niebauer CL (2001) A possible connection between categorical and coordinate spatial relation representations. Brain Cogn 47:434–445PubMedCrossRefGoogle Scholar
  41. Oldfield RC (1971) The assessment and analysis of handedness: the Edinburgh Inventory. Neuropsychologia 9:97–113PubMedCrossRefGoogle Scholar
  42. Peterson BS, Kane MJ, Alexander GM et al (2002) An event-related functional MRI study comparing interference effects in the Simon and Stroop tasks. Cogn Brain Res 13:427–440CrossRefGoogle Scholar
  43. Pozuelos JP, Pazalonso PM, Castillo A et al (2014) Development of attention networks and their interactions in childhood. Dev Psychol 50:2405–2415PubMedCrossRefGoogle Scholar
  44. Price CJ, Friston KJ (2005) Functional ontologies for cognition: the systematic definition of structure and function. Cogn Neuropsychol 22:262–275. doi: 10.1080/02643290442000095 PubMedCrossRefGoogle Scholar
  45. Quinn PC (2007) On the infant’s prelinguistic conception of spatial relations: three developmental trends and their implications for spatial language learning. In: Plumert JM, Spencer JP (eds) The emerging spatial mind. Oxford University Press, New York, pp 117–141CrossRefGoogle Scholar
  46. Ruff CC, Knauff M, Fangmeier T, Spreer J (2003) Reasoning and working memory: common and distinct neuronal processes. Neuropsychologia 41:1241–1253. doi: 10.1016/S0028-3932(03)00016-2 PubMedCrossRefGoogle Scholar
  47. Scott NM, Georgopoulos A, Sera M (2015a) Accessibility to relational terms aids nonverbal relational judgments. Poster presented at Society for Research in Child Development, Philadelphia, PAGoogle Scholar
  48. Scott NM, Sera M, Georgopoulos A (2015b) An information theory analysis of spatial decisions in cognitive development. Front Neurosci 9:14. doi: 10.3389/fnins.2015.00014 PubMedPubMedCentralCrossRefGoogle Scholar
  49. Semel E, Rosner SR (2003) Understanding Williams syndrome. Erlbaum, MahwahGoogle Scholar
  50. Shelton AL, Gabrieli JDE (2002) Neural correlates of encoding space from route and survey perspectives. J Neurosci 22:2711–2717PubMedGoogle Scholar
  51. Sholl MJ, Egeth HE (1981) Right–left confusion in the adult: a verbal labeling effect. Mem Cognition 9:339–350CrossRefGoogle Scholar
  52. Simon JR (1969) Reactions toward the source of stimulation. J Exp Psychol 81:174–176PubMedCrossRefGoogle Scholar
  53. Slotnick SD, Moo LR, Tesoro MA, Hart J (2001) Hemispheric asymmetry in categorical versus coordinate visuospatial processing revealed by temporary cortical deactivation. J Cogn Neurosci 13:1088–1096PubMedCrossRefGoogle Scholar
  54. Stieff M, Dixon BL, Minjung M et al (2013) Strategy training eliminates sex differences in spatial problem solving in a STEM domain. J Educ Psychol 106:390–402. doi: 10.1037/a0034823 CrossRefGoogle Scholar
  55. Uttal DH, Meadow NG, Tipton E et al (2013) The malleability of spatial skills: a meta-analysis of training studies. Psychol Bull 139:352–402. doi: 10.1037/a0028446 PubMedCrossRefGoogle Scholar
  56. Vendetti MS, Matlen BJ, Richland LE, Bunge SA (2015) Analogical reasoning in the classroom: insights from cognitive science. Mind Brain Educ 9:100–106CrossRefGoogle Scholar
  57. Verdine BN, Golinkoff RM, Hirsh-Pasek K et al (2014) Deconstructing building blocks: preschoolers’ spatial assembly performance relates to early mathematical skills. Child Dev 85:1062–1076. doi: 10.1111/cdev.12165 PubMedPubMedCentralCrossRefGoogle Scholar
  58. Wang L, Li X, Hsiao SS, Lenz FA, Bodner M, Zhou YD, Fuster JM (2015) Differential roles of delay-period neural activity in the monkey dorsolateral prefrontal cortex in visual-haptic crossmodal working memory. Proc Natl Acad Sci USA 112:E214–E219. doi: 10.1073/pnas.1410130112 PubMedPubMedCentralCrossRefGoogle Scholar
  59. Wendelken C, Chung D, Bunge S (2012) Rostrolateral prefrontal cortex: domain-general or domain-sensitive? Hum Brain Mapp 33:1952–1963. doi: 10.1002/hbm.21336 PubMedPubMedCentralCrossRefGoogle Scholar
  60. Wendelken C, Ferrer E, Whitaker KJ, Bunge S (2015) Fronto-parietal network reconfiguration supports the development of reasoning ability. Cereb Cortex. doi: 10.1093/cercor/bhv050 Google Scholar
  61. Wittfoth M, Buck D, Fahle M, Herrmann M (2006) Comparison of two Simon tasks: neuronal correlates of conflict resolution based on coherent motion perception. Neuroimage 32:921–929. doi: 10.1016/j.neuroimage.2006.03.034 PubMedCrossRefGoogle Scholar
  62. Wright SB, Matlen BJ, Baym CL et al (2008) Neural correlates of fluid reasoning in children and adults. Front Hum Neurosci 1:8. doi: 10.3389/neuro.09/008.2007 PubMedPubMedCentralGoogle Scholar
  63. Yantis S, Serences JT (2003) Cortical mechanisms of space-based and object-based attentional control. Curr Opin Neurobiol 13:187–193. doi: 10.1016/S0959-4388(03)00033-3 PubMedCrossRefGoogle Scholar
  64. Zacks JM, Michelon P (2005) Transformations of visuospatial images. Behav Cogn Neurosci Rev 4:96–118. doi: 10.1177/1534582305281085 PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg (outside the USA) 2015

Authors and Affiliations

  • Nicole M. Scott
    • 1
  • Arthur Leuthold
    • 2
  • Maria D. Sera
    • 1
    • 3
  • Apostolos P. Georgopoulos
    • 1
    • 2
    Email author
  1. 1.Center for Cognitive SciencesUniversity of MinnesotaMinneapolisUSA
  2. 2.Department of NeuroscienceUniversity of MinnesotaMinneapolisUSA
  3. 3.Institute of Child DevelopmentUniversity of MinnesotaMinneapolisUSA

Personalised recommendations